

February 26, 2019

Mr. Paul Michaud Senior Planner Town of Paradise Valley 6401 E Lincoln Drive 480-348-3574 (phone)

Mr. Michaud:

During the last work study session for the Mountain View Medical Center, several questions were raised and additional tasks requested as part of the Traffic Impact Analysis. Below is a list of the specific questions and requests and the results of the updated analysis.

- i. Perform the various simulations/volume counts to describe the impact on vehicle stacking while waiting to turn left onto Shea Blvd. heading north on Tatum, including the length of this stacking.
 - Please see attachment for the levels of service predicted and the resulting queue storage for the PM peak. A field review was conducted which indicated that the initial queue for the southbound left turns was approximately 7 vehicles while the initial queueing for the northbound vehicles was 22. Three random seeding evaluations were simulated and then averaged to compute the queue storage for all movements at the intersection. A simulation analysis, starting with existing traffic flow validation, resulted in better levels of service than the static intersection analysis reported within the TIA for the Mountain View Medical Center. Results of the analysis are attached.
- ii. More information on signalized timing, what changes can be made to improve traffic flow on Tatum Blvd.
 - The traffic signal would be optimized by an increase in cycle length from 120 seconds to 150 seconds. The existing delay occurs on the on northbound left turn and westbound through movements. To assist with the delay green time is added to the northbound left turn movement and decreased from the eastbound through. The green time was increased for the westbound through movement and decreased from the southbound left turn movement.
- iii. Describe impact on U-turns that occur from vehicles heading south from Fry's and then going north, include possible implements.
 - During peak hours there is a stated challenge with vehicles egressing the Fry's driveway unable to negotiate a left turn on Tatum Boulevard to head north. These vehicles negotiate a right turn and head south on Tatum Boulevard and then U-turn on Tatum or the Beryl alignment to head north. This movement is assumed to be made by drivers desiring to head east on Shea Boulevard or north of Tatum Boulevard. Queuing on Shea Boulevard beyond the first driveway and a poorly configured

parking area in front of Fry's likely contribute to a driver's choice to use Tatum Boulevard for these movements. Shea Boulevard would be the typical choice of drivers for these movements. The new medical center will not change this condition which is caused by the land uses and driveway locations on the southwest corner of Tatum Boulevard and Shea Boulevard in the City of Phoenix.

The City of Phoenix is proposing a new traffic signal along Shea Boulevard, west of Tatum Boulevard, at the existing Fry's/Trader Joe's driveway. This will allow more opportunity for vehicles to enter the traffic stream when they desire to head east on Shea Boulevard or north on Tatum Boulevard. The new signal should significantly reduce the occurrence of the U-turn behavior experienced in the existing condition.

iv. Address the need for any bus bays on Shea Blvd or Tatum Blvd. The analysis would note that there is no bus bay along this site on Tatum Blvd. since it is north of the intersection. There is also a bus stop 250' south of Beryl that should be addressed.

Currently bus bays are not provided in or around the proposed site; busses stop in lane with an existing bus stop located 250-feet south of Beryl Road along Tatum Boulevard. It should also be noted that an existing bus stop currently exists along the northern site frontage on Shea Boulevard approximately 240-feet east of Tatum Boulevard (from center). The simulation analysis shows that a bus frequency of 15-minute headways does not adversely affect delays for more than one signal cycle. Since the existing traffic patterns are not affected, bus bays are not warranted along the Tatum Boulevard or Shea Boulevard site frontage. There may be other warranting criteria for the addition of bus bays such as the number of riders using each of these stops. In addition, bus bays require maintenance that would be the responsibility of the City of Phoenix. The City of Phoenix would need to agree to the long-term maintenance and upkeep of any new bus bay location.

v. Address warrant for any deceleration lanes on Shea Blvd. or Tatum Blvd. This is in the provided analysis. However, at the meeting it was discussed that restriping could be done on northbound Tatum Blvd within existing asphalt. This should be explained more with graphics. If you could provide the frequency of restriping on major arterials like Tatum Blvd from the city of Phoenix that would be helpful.

The outer most NB Thru lane currently provides about 26-feet of pavement that begins to taper down to 11-feet approaching the intersection of Tatum Boulevard and Shea Boulevard. Per the City of Phoenix standards a thru lane and/or turn lane should provide a minimum lane width of 10-feet. Considering the outer NB thru lane provides about 26-feet of pavement, some of this can be used for a turn lane while still providing a 12 foot third through lane in the northbound direction. Please see exhibit below.

The City of Phoenix does not require deceleration lane installation where there are three through lanes in each direction. Correspondence with the City of Phoenix indicates that they would be willing to allow the installation of deceleration lanes at the discretion of the Town of Paradise Valley. A deceleration lane warrant was performed for all of the site driveways using the criteria established by the Town of Paradise Valley. The latest section from the TIA summarizing these warrants has been included below:

QUEUING ANALYSIS

Right-Turn Declaration Lanes.

Per the Town of Paradise Valley Traffic Impact Analysis Criteria, May 2015, the need for a deceleration lane is determined with criteria. The proposed site conditions must meet a **minimum of three** of the following criteria:

- 1. At least 5,000 vehicles per day are using or are expected in the near future (five years after the development is build out) to be using the adjacent street.
- 2. The posted speed limit is 35 mph or the 85th percentile speed limit is greater than 35 mph.

- 3. At least 1,000 vehicles per day are using or are expected to use the driveways(s) for the development or adjacent developments(s) (existing of future).
- 4. At least 90 vehicles are expected to make right turns into the driveway(s) for a one-hour period for the development or adjacent developments (existing or future).

Peak Period Criteria Met? Right-turn Intersection Volume AM Criteria 2 Criteria 1 Criteria 3 Criteria 4 (PM) Tatum Blvd & Fry's Dwy/Medical Center NB - 27(13)Yes Yes No No Dwy Tatum Blvd & Beryl Avenue NB - 17(8)Yes Yes No No Albertson's Dwy/Medical Center Dwy &

EB - 57(26)

Table 1 - Right-Turn Lane Criteria

Deceleration lanes are not warranted at any of the site driveways. A deceleration lane was recommended at for northbound right turns onto Beryl Drive since it has the high number of entering vehicles and width along Tatum Boulevard appears to be available. This will provide more than required by the Town of Paradise Valley and the City of Phoenix.

Yes

Yes

No

No

vi. Address warrant for signalized light at Beryl Avenue.

Shea Blvd

A signal warrant analysis was completed at this study location, which did not meet the four or eighthour signal warrants. The results of the analysis are shown the traffic impact analysis and are provided here as a summary:

Warranting Criteria	Total Volume Both Major Approaches	Both Major Side Street Approaches Approach		Warrant Satisfied
Warrant 1 – Condition A	3,147	64 in eighth hour 86 in highest hour	140	NO
Warrant 1 – Condition B	3,147	64 in eighth hour 86 in highest hour	70	NO
Warrant 1 – Combo A & B	3,147	64 in eighth hour 86 in highest hour	112	NO
Warrant 2	73 in fourth hour 3,147 86 in highest hou		80	NO
Warrant 3	3,147	86	100	NO

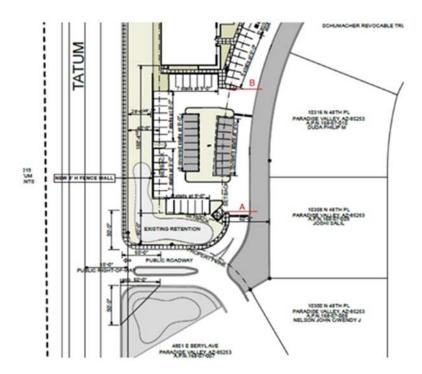
A crash warrant has also been prepared since submittal of the traffic impact analysis. A crash warrant is satisfied when five or more accidents occur at a location AND the accidents can be correctible with a traffic signal. A summary of crashes for 2016 and 2017 are shown below. No accidents were noted in 2015.

Incident No	Vehicle	On Street	Intersecting Street	Travel Direction	Collision Manner	Unit Action
2017						
3214847	1	Tatum	Beryl	East	Left turn	Making Left Turn (out of west driveway)
	2	Tatum	Beryl	North	Left turn	Going Straight
3270439	1	Tatum	Beryl	North	Rear End	Going Straight
	2	Tatum	Beryl	North	Rear End	Going Straight
3286085	1	Tatum	Beryl	North	Rear to Rear	Going Straight
	2	Tatum	Beryl	North	Rear to Rear	Stopped in Traffic
	3	Tatum	Beryl	North	Rear to Rear	Stopped in Traffic
	4	Tatum	Beryl	North	Rear to Rear	Stopped in Traffic
3306399	1	Tatum	Beryl	North	Sideswipe Same Direction	Changing Lanes
	2	Tatum	Beryl	North	Sideswipe Same Direction	Going Straight
2016						
3125470	1	Tatum	Beryl	South	Left turn	Making Left Turn (into east driveway)
	2	Tatum	Beryl	North	Left turn	Going Straight
	3	Tatum	Beryl	West	Left turn	Stopped in Traffic (out of east driveway)
2015		<u> </u>		· · · · · · · · · · · · · · · · · · ·		
N/A						

Of the accidents noted above, four total crashed were reported in 2017 and one total crash was reported in 2016. The only crash correctable at Beryl with the installation of a traffic signal is noted in 2016. While one accident is noted from Beryl in 2017, it occurs from the Fry's driveway. The number of reported crashed does not exceed the minimum threshold for signal installation.

Since the peak hour, four-hour, eight-hour and crash warrant minimum threshold criteria were not surpassed, a signal/traffic light is not recommended at this site location. Discussions with the City of Phoenix also indicated that they would be hesitant to install a traffic signal at this location due to the alignment of driveways on the west side of Tatum Boulevard and that they would not install a traffic signal without meeting applicable warranting criteria.

vii. Further address parking/traffic from project into the Firebrand ranch neighborhood.


A trip generation was prepared for the number of homes located in Firebrand Ranch and compared to the number of trips counted in the existing condition. If there is cut through traffic today, it appears to be very minimal during the peak hours. An exhibit showing the trip generation and existing traffic has been attached. It is not anticipated that patrons for the proposed Mountain View Medical Center will utilize Beryl to park or cut through Firebrand Ranch.

A parking analysis was completed which accounted for the number of patrons per square foot for all occupied square footage at the time of the count. Increased parking adjustments were also made after speaking with the tenants about the increase in patrons in the late fall and early spring months. The parking rate calculated specifically for this site (based only on actual data from the existing occupied area) was applied to the new square footage to determine the parking need at full occupancy (100% occupied). The average occupancy rate for medical office range between 87% (Avison Young values as shown on their Quarterly Healthcare Market Report). Thus a 100% occupancy assumes a conservative value for parking.

The medical center will be providing more parking than required by the parking study thus exceeding the actual parking need.

viii. Address gating/restricting/removing the Beryl Avenue driveway access (include gating the Shea Blvd driveway). This point was brought up again. The analysis should provide the pros and cons, with the proposed approach.

The exhibit below is used for reference when discussing a gate located on the North Beryl alignment.

Gate

Pros – Gated North Beryl or Gated Shea

Traffic would not be able to enter the medical center at night, thus protecting the neighborhood from unwanted vehicles parking in the parking lot during non-typical working house.

Depending on the hours that gating occurs, traffic trying to enter the center would not be able to use the Beryl or Shea access to cut the corner of Tatum Boulevard and Shea Boulevard.

Cons – Gated North Beryl or Gated Shea

Tenants and patrons may experience difficulties with entering their place of business or visiting their doctor is scheduling occurs in non-typical hours. Gating could also cause additional U-turn movements, both internal at the existing Beryl turnaround, along Shea at the median cut or a Tatum using the northbound left turn lanes. These movements would have been efficiently distributed using the typical driving pattern but could be forced to use other options should the gates not allow access to the center.

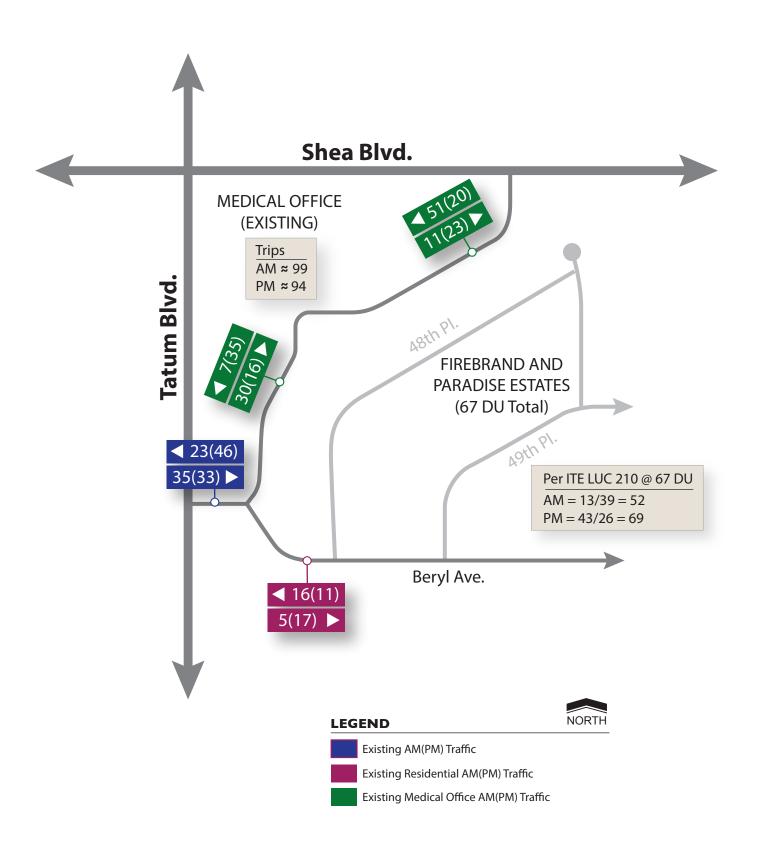
If the gate is located in Position A, there is inadequate backup and turnaround space. The drive Isle isn't wide enough to accommodate a pedestal mounted card reader and allow two-way emergency vehicle access. This would require a half gate arm for the traffic going in the North direction and a set of in ground traffic control spikes in the South direction. This position also creates a conflict with the relocated trash enclosure.

If the gate is located in Position B, the drive Isle isn't wide enough to accommodate a pedestal mounted card reader and allow two-way emergency vehicle access. This would require a half gate arm for the traffic going in the north direction and a set of in ground traffic control spikes in the South direction. The employee parking area and long-term covered parking will become part of the default turnaround area. This may have the effect of non-employees or visitors parking in this this area and walking across the campus to their destination.

Removing the Beryl Avenue Driveway

Removing the Beryl Avenue Driveway would require the medical center to operate with one full access driveway located more closely to the intersection of Tatum Boulevard and Shea Boulevard. During the peak hours, full turn movements would be restricted at the northernmost driveway location due to the presence of queued vehicles. The U-turn potential will likely increase on Tatum Boulevard since and should Beryl remain for the residences, this would be the first location that a vehicle could turn in order to negotiate a U-turn and utilize the open driveway further north on Tatum. There would be no access to the south from the restricted access points – vehicles would have to utilized 50th Street to Mountain View Road in order to access Tatum southbound. Therefore, an increase in traffic on 50th Street and on Mountain View Road is anticipated with the restriction of the driveway.

Thank you for the opportunity to provide this information to the Town Council. Should you need any additional information please contact me at 480-659-4250.


Sincerely,

CivTech Inc.

Dawn Cartier President

#\$\text{\$\}}}}\text{\$\e

Exhibit A

2024 PM TOTAL - SIMTRAFFIC

		NB		SB				EB					
Seed	Left	Thru	Right	Overall									
1	41.1	17.3	4.0	6.6	10.3	5.0	11.4	11.4	0.4	4.4	42	1.8	46
2	37.1	17.5	4.7	8.3	11.6	4.1	8.6	11.1	0.4	4.0	32.2	0.9	33.4
3	43.7	22.1	5.47	9.2	10.4	3.6	7.6	12.2	0.4	9.0	77.2	5.8	68.4
Average Delay	40.6	19.0	4.7	8.0	10.8	4.2	9.2	11.6	0.4	5.8	50.5	2.8	49.3
LOS	D	В	Α	Α	В	Α	Α	В	Α	Α	D	Α	D

LOS	Delay
Α	<u>≤</u> 10
В	>10.0 and < 20.0
С	>20.0 and < 35.0
D	>35.0 and < 55.0
E	>55.0 and < 80.0
F	> 80.0

2024 PM TOTAL - SIMTRAFFIC 95TH QUEUE (FT)

	NB SB					EB					WB											
Seed	L	L	T	T	TR	L	L	T	T	TR	L	L	T	T	Т	R	L	L	Ţ	T	Ţ	R
1	282'	1,054'	1,210'	1,078'	699'	202'	272'	329'	304'	368'	262'	317'	468'	420'	254'	150'	143'	493'	885'	826'	720'	466'
2	280'	1,184'	1,127'	1,081'	641'	232'	290'	326'	307'	363'	243'	303'	377'	319'	243'	85'	135'	483'	785'	711'	573'	452'
3	286'	1,046'	1,189'	1,121'	839'	248'	285'	364'	306'	336'	228'	318'	413'	350'	280'	148'	141'	504'	1,057'	1,067'	1,112'	464'
Average Q (ft)	283'	1,095'	1,175'	1,093'	726'	227'	282'	340'	306'	356'	244'	313'	419'	363'	259'	128'	140'	493'	909'	868'	802'	461'
Existing Q (ft)	190'	350'	-	-	-	190'	320'	-	-	-	200'	300'	-	-	-	200'	275'	425'	-	-	-	240'

2/21/2019 PM Peak Observed Initial Queue (veh)

			NB				SB				EB					WB						
Cycle	L	L	Т	Т	TR	L	L	Т	Т	TR	L	L	T	T	Т	R	L	L	Т	Т	Т	R
1	12	12	9	8	8	2	2	8	8	17	2	6	20	20	12	0	7	8	17	15	15	12
2	12	12	14	14	16	5	4	7	9	13	4	4	10	7	7	6	4	4	30	15	15	12
3	9	10	15	18	18	5	4	8	8	11	2	4	7	7	3	3	2	4	28	20	20	12
Average Vehicle Q	11	11	13	13	14	4	3	8	8	14	3	5	12	11	7	3	4	5	25	17	17	12
Q Length (25'/veh)	275'	275'	325'	325'	350'	100'	75'	200'	200'	350'	75'	125'	300'	275'	175'	75'	100'	125'	625'	425'	425'	300'

Paul Michaud

Subject: FW: Parking-Traffic - Mtn View Medical

From: Matthew Wilson <matthew.wilson@phoenix.gov>

Sent: Friday, February 1, 2019 8:32 AM

To: Derek Fancon derek.fancon@phoenix.gov; Paul Michaud pmichaud@paradisevalleyaz.gov;

Cc: Paul Mood
pmood@paradisevalleyaz.gov

Subject: RE: Parking-Traffic - Mtn View Medical

Output

Description:

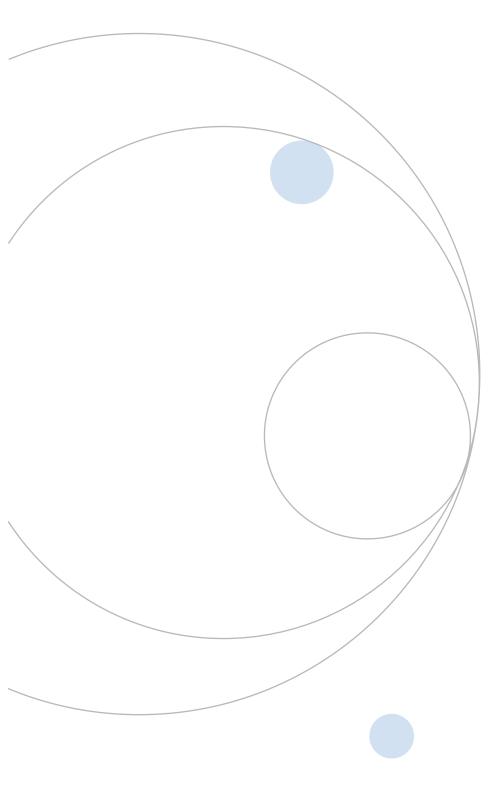
Descripti

Gentlemen,

I apologize for our delayed response on these items. It has been a hectic week.

I've looked over the TIA and the expected impacts. I agree with the Town's additional points to include in the revised TIA. Unfortunately, I don't see much in the way of potential mitigation for this issue. I'm rather familiar with this intersection; I live quite close to here.

There is some nearby developer driven changes happening that might help this situation. On the NWC area of Shea, the Trader Joe's driveway is being realigned to the driveway out of Fry's with a new signal to be installed. This should alleviate the complex exiting movements from Fry's and help the Tatum NB left turns. We don't have a study associated with this, so it may be useful to have CivTech incorporate some of the revised traffic pattern.


My only other thought on the Phoenix side is to have CivTech submit recommended signal timing revisions to us. However, I expect our ops group has done their best with this location already.

Please feel free to give me a call to further discuss. Or let me know what else that I can provide.

With the thoroughness of the review you've asked the developer to conduct, I'm inclined to defer to your review regarding City approval. I can provide a letter to that effect, but I don't see any required stipulations from our end. But I'm more than happy to back up any stipulations you're pursuing.

Best regards,

Matt Wilson 602-262-7580

Mountain View Medical Center

Traffic Impact Analysis

Southeast Corner of Tatum Blvd. and Shea Blvd. Mountain View, Arizona

July 2018 Project No. 18-0850

Prepared For:

Stantec Consulting Services, Inc. 8211 South 48th Street Phoenix, AZ 85044

For Submittal to: **Town of Paradise Valley**

Prepared By:

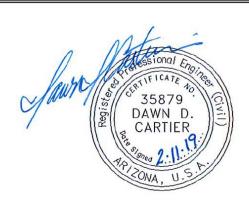
Suite 140 Scottsdale, Arizona 85260 480-659-4250

MOUNTAIN VIEW MEDICAL CENTER REDEVELOPMENT TRAFFIC IMPACT ANALYSIS

SEC of Tatum Boulevard and Shea Boulevard Paradise Valley, Arizona

Prepared for:

Stantec Consulting Services, Inc. 8211 South 48th Street Phoenix, AZ 85044


For Submittal to:

Town of Paradise Valley

Prepared By:

CivTech, Inc. 10605 North Hayden Road Suite 140 Scottsdale, Arizona 85260 (480) 659-4250

TABLE OF CONTENTS

LIST OF FIGURES	III
EXECUTIVE SUMMARY	1
INTRODUCTION	3
EXISTING CONDITIONS	5
SURROUNDING LAND USE	5
ROADWAY NETWORK	5
INTERSECTION CONFIGURATIONS AND TRAFFIC CONTROLS	6
TRAFFIC VOLUMES	7
EXISITING CAPACITY ANALYSIS	10
PROPOSED IMPROVEMENTS	12
DESCRIPTION	12
PHASING AND INTENSITY	12
SITE ACCESS	12
TRIP GENERATION	12
TRIP DISTRIBUTION AND ASSISGNMENT	14
FUTURE BACKGROUND TRAFFIC	15
TOTAL TRAFFIC	15
INTERSECTION CAPACITY ANALYSIS	20
TRAFFIC SIGNAL WARRANT ANALYSIS	23
QUEUING ANALYSIS	28
CONCLUSIONS	30
TECHNICAL APPENDIX	33

LIST OF TABLES

Table 1 - Level of Service Criteria for Controlled Intersections	10
Table 2 - Existing Peak Hour Levels of Service	11
Table 3 - Trip Generation Summary	14
Table 4 - Trip Generation Comparison	14
Table 5 - Trip Distribution	14
Table 6 - Peak Hour Levels of Service	20
Table 7 - Right-Turn Lane Criteria	28
Table 8 – Turn Lane Queue Storage	29
LIST OF FIGURES	
Figure 1 - Vicinity Map	4
Figure 2 - Existing Lane Configuration and Control	8
Figure 3 - Existing Peak Hour Traffic Volumes	9
Figure 4 - Site Plan and Access	13
Figure 5 - Trip Distribution	16
Figure 6 - Site Traffic Volumes	17
Figure 7 - Background Traffic Volumes	18
Figure 8 - Total Traffic Volumes	19
Figure 9 – Proposed Lane Configurations	22

EXECUTIVE SUMMARY

The Mountain View Medical Center is located on the southeast corner of Tatum Boulevard and Shea Boulevard in Paradise Valley, Arizona. The existing medical center currently consists of $\pm 59,969$ gross square feet (SF) of medical office land use and is proposing a redevelopment to consist of $\pm 91,318$ net SF. The development provides three (3) existing access points.

CivTech has been retained by Stantec Consulting Services, Inc. to perform a traffic impact analysis (TIA) for the proposed redevelopment. The purpose of this report is to document projected traffic and any transportation impacts and needs of the proposed improvements on the surrounding streets, intersections and existing driveways.

The following conclusions and recommendations have been documented in this study.

- The redevelopment will be built out in three phases. Phase 1 consists of 18,697 SF medical use. Phase 2 adds 15,821 SF for a total of 34,518. Phase 3 adds 56,800 SF for the total of 91,318 SF.
- The redevelopment is anticipated to add approximately 1,204 daily trips to the roadway network, with 64 additional trips during the AM peak hour and 107 additional trips during the PM peak hour.
- The results of the existing conditions analysis summarized in **Table 2** indicates that all study intersections operate at overall LOS D or better with the exception of Tatum Boulevard & Shea Boulevard, Tatum Boulevard & Beryl Avenue/Tatum Corporate Center Driveway.
 - The intersection of *Tatum Boulevard and Shea Boulevard* is evaluated to operate at LOS E during the PM peak hour. This is due to high traffic volumes compared to its capacity, particularly the northbound left turn.
 - o The intersection of *Tatum Boulevard & Beryl Avenue/Tatum Corporate Center Driveway* is evaluated to operate with delays in several movements during the PM peak hour. Poor levels of service during peak hours is not uncommon on side street approaches to major arterial roadways.
- The results of the proposed conditions analysis summarized in **Table 6** indicates that half of the study intersections operate at overall LOS D or better during the peak hours while the other half do not during one or more peak hours. Nearly all reported LOS with the proposed redevelopment are identical to their respective LOS without the redevelopment.
- During a work study session, several neighborhood concerns were expressed. A simulation model was prepared in response to the concerns to help address the issues of bus stops, queueing, and signalization in close proximity to the intersection of Tatum Boulevard and Shea Boulevard.

- The intersection of *Tatum Boulevard and Shea Boulevard* continues to operate with heavy delays during the PM peak hour due to high traffic volumes compared to its capacity, particularly the northbound left-turn. The delay of the intersection is aggregated with projected future growth. Any potential future mitigation is not considered the responsibility of the developer.
- To help mitigate future LOS it is suggested all U-turns be restricted at the intersection of Tatum Boulevard and Shea Boulevard to allow for signal optimization and reallocation of green time for each peak hour.
- Currently bus bays are not provided in or around the proposed site; busses stop in lane with an existing bus stop located 250-feet south of Beryl Road along Tatum Boulevard. It should also be noted that an existing bus stop currently exists along the northern sit frontage on Shea Boulevard approximately 240-feet east of Tatum Boulevard (from center). The simulation analysis shows that a bus frequency of 15-minute headways does not adversely effect delays for more than one signal cycle. Since the existing traffic patterns are not affected, additional bus stops/bays are not warranted along the Tatum Boulevard or Shea Boulevard site frontage. There may be other warranting criteria for the addition of bus bays such as the number of riders using each of these stops.
- The intersections of *Tatum Boulevard & Fry's Driveway/Medical Center Driveway* and *Tatum Boulevard & Beryl Avenue/Tatum Corporate Center Driveway* have projected delays in the build and no build scenario on their side street approach to the major street. Poor levels of service during peak hours are not uncommon on side street approaches to major arterial roadways. A signal warrant analysis was completed at this study location, which did not meet the four or eight-hour signal warrants. Therefore, a signal/traffic light is not recommended at this site location.
- o The intersection of **50**th **Street and Shea Boulevard** has projected delays due to the westbound approach capacity. If the signal does not have pedestrian recall additional time can be allotted to the westbound approach, mitigating the projected delay.
- The development will utilize existing driveways and lane configurations. No changes to existing turn lanes are recommended as part of this development.

INTRODUCTION

The Mountain View Medical Center is located on the southeast corner of Tatum Boulevard and Shea Boulevard in Paradise Valley, Arizona. The 59,969 gross square feet (SF) of medical office land use is proposed for redevelopment to become approximately 91,318 net SF. The development provides three (3) existing access points along Tatum Boulevard and Shea Boulevard. A location map is provided in **Figure 1**.

This Transportation Impact Analysis (TIA) was completed in accordance with the standard criteria set forth by the Town of Paradise Valley's Guidelines dated May, 2015. A preliminary analysis indicated that a Category 1 TIA would be required for this project. This study analyzes the traffic impact due to the proposed improvements on the surrounding street network.

Study Area

The study area for a Category 1 study is defined as all major intersections and roadway segments within 1/4 mile of the site and all major driveways within 500 feet of the project site boundary. The following site intersection has been evaluated:

- Tatum Boulevard and Desert Cove Avenue
- Tatum Boulevard and Shea Boulevard
- Tatum Boulevard and Fry's Driveway (north)/Medical Center
- Tatum Boulevard and Beryl Avenue/Tatum Corporate Center Driveway (north)
- Tatum Boulevard and Gold Dust Avenue
- Medical Center Driveway and Beryl Avenue
- Albertson's Driveway/Medical Center and Shea Boulevard
- 50th Street and Shea Boulevard

Study Years

For study purposes, it is assumed that the opening year of the redevelopment will be 2019. A Category 1 study includes the analysis of opening year/Phase 1 (2019) and 5 years after opening/buildout (2024).

Considering the Phase 1 and Phase 2 combined square footage (34,518 SF) is less than that of the existing building (59,969 SF), and the land use is unchanged, the trips generated by completion of Phase 1 and Phase 2 are expected to be less than the existing conditions. The traffic impact for the opening year (Phase 1) is expected to be less than the existing conditions and analysis thereof is not necessary. For this reason, this analysis was limited to the 5th year with Phase 3/buildout (2024).

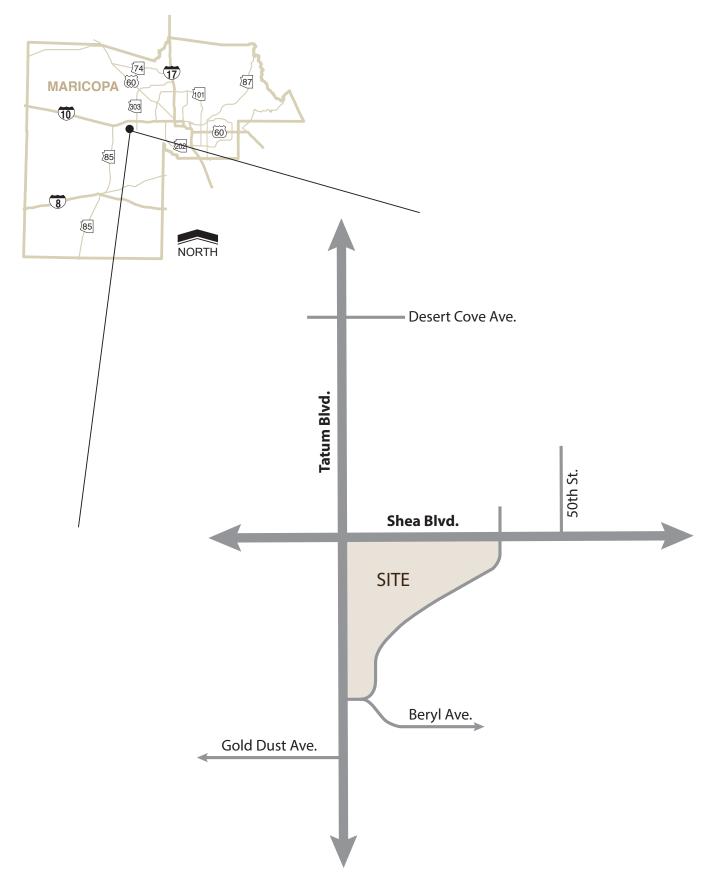


Figure 1: Vicinity Map

EXISTING CONDITIONS

The Mountain View Medical Center is located on the southeast corner of Tatum Boulevard and Shea Boulevard. The existing site encompasses approximately 10.16 net acres and consists of approximately 59,969 gross SF of medical land uses.

SURROUNDING LAND USE

North of the site is Paradise Village Gateway, a shopping center that encompasses approximately 30 acres and consists of a grocery store, coffee shops, restaurants and retail shops. South and east of the site are various neighborhoods with single-family homes. Directly west of the site is a Fry's Food Store.

ROADWAY NETWORK

The existing roadway network within the study area includes Tatum Boulevard, Shea Boulevard, Gold Dust Avenue, Beryl Avenue, Desert Cove Avenue and 50th Street.

Tatum Boulevard is a north/south six (6) lane roadway with three (3) lanes in each direction of travel, divided by a raised median north of Shea Boulevard and a two-way left-turn lane (TWLTL) south of Shea Boulevard. Tatum Boulevard is classified as a major arterial street by the City of Phoenix. Tatum Boulevard begins to the north at the intersection with Cave Creek Road and terminates to the south at the intersection with McDonald Dr. where it converts to 44th Street. The posted speed limit within the vicinity of the site is 40 mph.

Shea Boulevard is an east/west six (6) lane roadway with three (3) lanes in each direction of travel and a center raised median. Shea Boulevard is classified as a major arterial street by the City of Phoenix. Shea Boulevard begins to the west at the intersection with 24th street and terminates to the east at SR 87. Shea Boulevard provides access to SR 51, SR Loop 101 and SR 87. The posted speed limit within the vicinity of the site is 45 mph.

Gold Dust Avenue is an east/west (2) lane roadway with one (1) lane in each direction of travel and unmarked stripping within the vicinity of the site. The roadway is assumed to be a collector street. The segment of Gold Dust Avenue within the vicinity of the site begins at 44th Street and terminates ½-mile to the east at Tatum Boulevard. The posted speed limit within the vicinity of the site is 25 mph.

Beryl Avenue is a two (2) lane local street with (1) lane in each direction of travel and unmarked stripping within the vicinity of the site. The segment of Beryl Avenue within the vicinity of the site begins at Shea Boulevard and terminates ¾-mile east at 50th Place. Beryl Avenue serves as circulation for Mountain View Medical Center and the neighborhood adjacent to the Medical Center. The posted speed limit within the vicinity of the site is assumed to be 15 mph.

Desert Cove Avenue is a two (2) lane local street with one (1) lane in each direction of travel and unmarked stripping within the vicinity of the site. The segment of Desert Cove Avenue within the vicinity of the site begins east of Tatum Boulevard at the driveway off Paradise Valley Office Suites and terminates 0.35 miles to the west where it converts into 50th Street. Desert Cove Avenue serves as access to Paradise Village Gateway and various multi-family housing complexes. There is no posted speed limit within the vicinity of the site.

50th **Street** is a two (2) lane driveway with one (2) lane in each direction of travel and unmarked stripping within the vicinity of the site. The segment of 50th Street within the vicinity of the site is a 500 FT driveway that provides access to Paradise Village Gateway, Paradise Valley Plaza and a multi-family housing complex.

INTERSECTION CONFIGURATIONS AND TRAFFIC CONTROLS

The intersection of *Tatum Boulevard and Desert Cove Avenue* operates as signalized four-legged intersection with permitted left-turns on all approaches. The northbound and southbound approaches consist of one (1) exclusive left-turn lane, two (2) through lanes and one (1) shared through/right-turn lane. The eastbound and westbound approach consists of one (1) shared left/through/right-turn lane.

The intersection of **Tatum Boulevard and Shea Boulevard** operates as a signalized four-legged intersection with protected left turns on all approaches. The northbound and southbound approaches consist of dual left-turn lanes, two (2) through lanes and one (1) shared through/right-turn lane. The eastbound and westbound approach consist of dual left-turn lanes, three (3) through lanes and one (1) dedicated right-turn lane.

The intersection of *Tatum Boulevard and Fry's Driveway (north)/Medical Center* operates as a four-legged intersection with stop control on the eastbound and westbound approaches. The northbound approach consists of one (1) left turn lane, two (2) through lanes and one (1) shared through/right-turn lane. The southbound approach consists of three (3) through lanes and one (1) dedicated right-turn lane. Left-turns into the medical driveway are not allowed. The eastbound and westbound approaches consist of one (1) shared left/through/right-turn lane. Eastbound left-turns are not permitted between the hours of 2 PM and 6 PM.

The intersection of *Tatum Boulevard and Beryl Avenue/Tatum Corporate Center Driveway (north)* operates as a four-legged intersection with stop control on the eastbound and westbound approach. The northbound approach consists of a center two-way left-turn lane, two (2) through lanes and a 24 foot outside lane that has the width for both a through and a right turn lane. The southbound approach consists of a center two-way left-turn lane, two (2) through lanes and a through/right-turn lane. The eastbound and westbound approaches consist of one (1) shared left/through/right-turn lane.

The intersection of **Tatum Boulevard and Gold Dust Avenue** operates a "T" intersection with stop control in the eastbound approach. The northbound approach consists of a two-way left-turn lane and three (3) through lanes. The southbound approach consists of two (2) through lanes and one (1) dedicated right-turn lane. The eastbound approach consists of one (1) shared left/right-turn lane.

The intersection of *Medical Center Driveway and Beryl Avenue* operates as a "T" intersection with no posted stop control yet functions as a yield in the southbound approach. The southbound approach consists of one (1) right-turn lane. The eastbound approach consists of one (1) shared left-turn/through lane. The westbound approach consists of one (1) shared through/right-turn lane.

The intersection of *Albertson's Driveway/Medical Center and Shea Boulevard* operates as a four-legged intersection with stop control on the northbound and southbound approaches. The northbound and southbound approaches consist of one (1) restricted right-turn lane, with left-turn and through movements restricted by a median on Shea Boulevard. The eastbound approach consists of one (1) exclusive left-turn lane, two (2) through lanes and one (1) shared through/right-turn lane. The westbound approach consists of one (1) exclusive left-turn lane, three (3) through lanes, and one (1) dedicated right-turn lane.

The intersection of **50th Street and Shea Boulevard** operates as a signalized "T" intersection with permitted left-turns on all approaches. The southbound approach consists of one (1) exclusive left-turn lane and one (1) dedicated right-turn lane. The eastbound approach consists of one (1) exclusive left-turn lane and three (3) through lanes. The westbound approach consists of one (1) through lane and one (1) shared through/right-turn lane.

The existing lane configurations and traffic controls are illustrated Figure 2.

TRAFFIC VOLUMES

CivTech engaged Field Data Services of Arizona, Inc. to record traffic volumes at the proposed study intersections within the project vicinity. Peak hour volume turning movement counts were performed on either Tuesday, June 5, 2018 or Wednesday, June 6, 2018 from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM at the study intersections. Data sheets for the recorded volumes are provided in **Appendix B**.

Since the existing volumes were collected in June during a time where the roadway is not at full capacity an adjustment factor was calculated. The City of Phoenix's adjustment factors (from ADT) are 0.99 for June and 0.99 for Tuesday. The seasonal adjustment factor to be applied is 1 / [monthly factor] / [weekday factor] = 1.020. An analysis using slightly older numbers considered a more conservative seasonal adjustment factor of 1.022. Existing traffic volumes were multiplied by 1.022. Also, the 59,969 gross SF of medical center was ninety percent occupied at the time the counts were conducted. To account for the vacancies, the existing volumes at the site driveways were adjusted. The adjusted existing traffic volumes for this study are illustrated in **Figure 3** for both AM and PM peak hours.

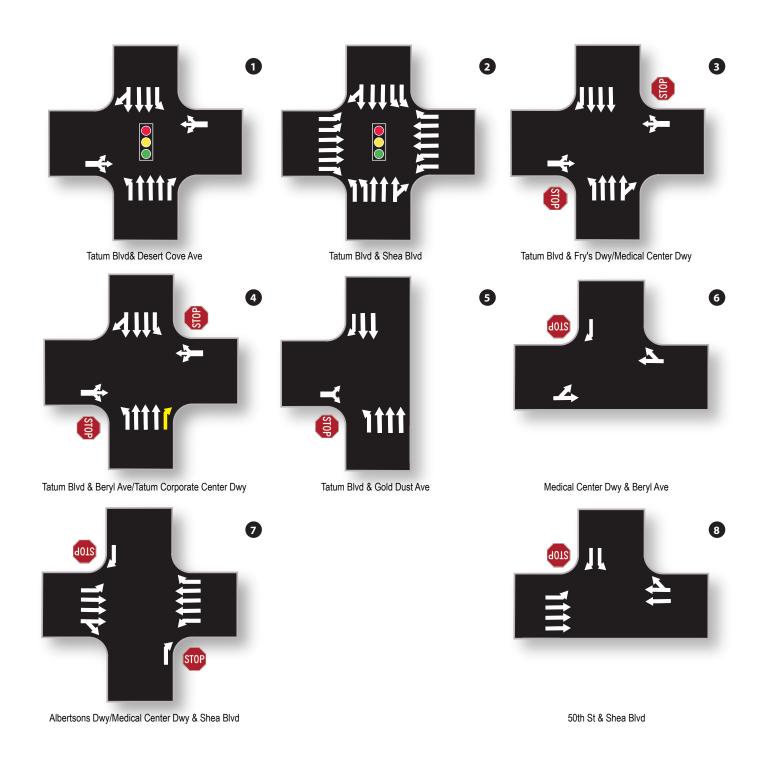
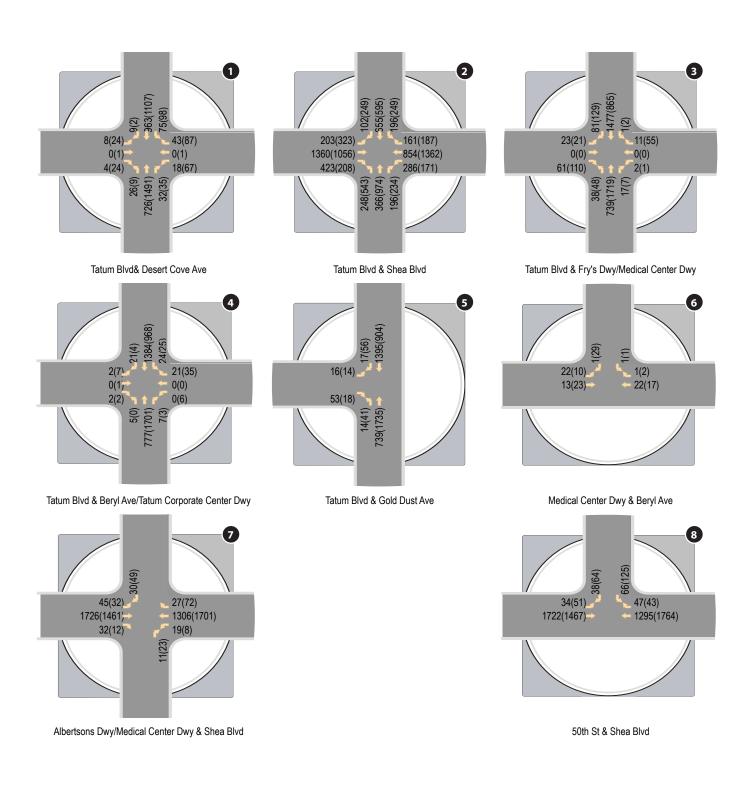



Figure 2: Existing Lane Configurations and Traffic Controls

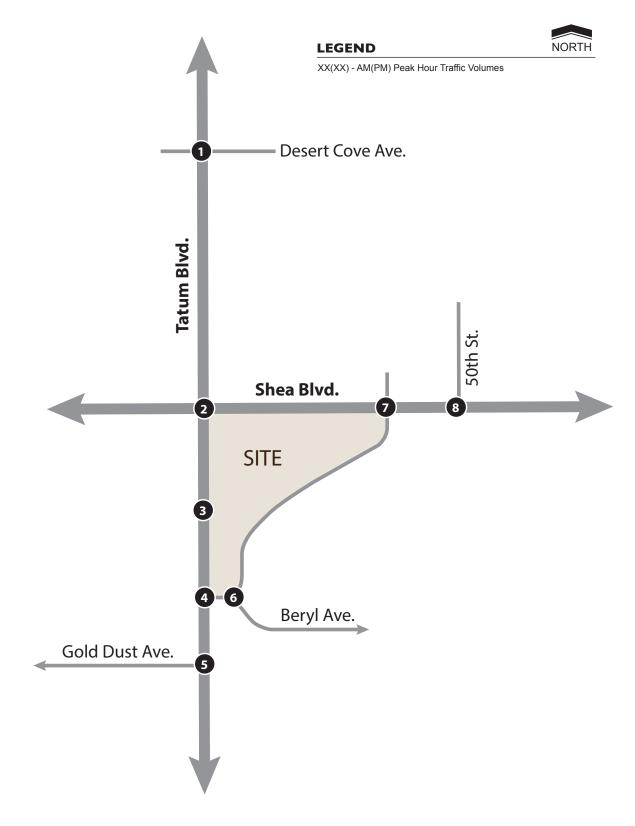


Figure 3: Existing Traffic Volumes

It should be noted that the traffic counts recorded vehicles making illegal left turns at the intersection of Tatum Boulevard and Fry's Driveway/Medical Center Driveway. They were left in the analysis but were not grown for future conditions.

EXISITING CAPACITY ANALYSIS

Peak hour capacity analyses have been conducted for the study intersections based on existing intersection lane configurations and traffic volumes. All intersections have been analyzed using the methodologies presented in the Transportation Research Board's *Highway Capacity Manual* and using Synchro software.

The concept of level of service (LOS) uses qualitative measures that characterize operational conditions within the traffic stream. The individual levels of service are described by factors that include speed, travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. Six levels of service are defined for each type of facility for which analysis procedures are available. They are given letter designations A through F, with LOS A representing the best operating conditions and LOS F the worst. Each level of service represents a range of operating conditions. Levels of service for intersections are defined in terms of delay ranges. **Table 1** lists the level of service criteria for signalized and unsignalized intersections, respectively.

Table 1 - Level of Service Criteria for Controlled Intersections

Level-of-Service	Unsignalized Control Delay (sec/veh)	Signalized Control Delay (sec/veh)				
Α	≤ 10	≤ 10				
В	> 10-20	> 10-15				
С	> 20-35	> 15-25				
D	> 35-55	> 25-35				
E	> 55-80	> 35-50				
F	> 80 (or v/c > 1)	> 50 (or v/c > 1)				

Source: Exhibits 19-8, 20-2, 21-8, and 22-8, Highway Capacity Manual 2017

Synchro 10 software calculates the LOS per the HCM 6th edition methodology. Synchro analysis worksheets report individual movement delay/LOS and overall delay/LOS for signalized intersections; unsignalized intersection worksheets report the worst-case delay/LOS and the average overall intersection delay. Results of the existing level of service analyses are shown in **Table 2** for both AM and PM peak hours. The existing conditions analysis worksheets have been included in **Appendix C**.

Table 2 - Existing Peak Hour Levels of Service

			THOUI ECVOIS OF	LO	S
ID	Intersection	Stop Control	Approach	AM	PM
			NB	С	В
	Tatum Blvd. & Desert		SB	С	В
1	Cove Ave.	Signal	EB	В	С
	Cove Ave.	_	WB	В	С
			Overall	С	В
			NB	E	E
	Tatum Blvd. & Shea		SB	E	D
2	Blvd	Signal	EB	D	D
	biva		WB	D	F
			Overall	D	E
	Tatum Blvd. & Fry's		NB Shared	В	В
3	Dwy. /Medical Center	2-way Stop (EB &	SB Shared	В	D
3	Dwy.	WB)	EB Shared	С	В
	Dwy.		WB Shared	В	D
	Tatum Blvd. & Beryl		NB Left	Α	Α
4	Ave. /Tatum Corporate	2-way Stop (EB &	SB Left	В	E
4	Center Dwy.	WB)	EB Shared	С	F
	•		WB Shared	В	F
5	Tatum Blvd. & Gold	1-way Stop (EB)	NB Left	Α	Α
3	Dust Ave.	1-way Stop (LD)	EB Shared	В	В
6	Medical Center Dwy. &	1-way Yield (SB)	SB Right	Α	Α
O	Beryl Ave.	1-way field (3b)	EB Left	Α	Α
	Albertson's Dwy.		EB Left	В	С
7	/Medical Center Dwy. &	2-way Stop (NB	WB Left	В	В
'	Shea Blvd.	& SB)	NB Right	В	В
	Office Divd.		SB Right	В	D
			SB	C	С
8	50 th St. & Shea Blvd.	Signal	EB	С	С
0	JU St. α Silea bivu.	Signal	WB	С	E
			Overall	С	D

The results of the existing conditions analysis summarized in **Table 2** indicates that all study intersections operate at overall LOS D or better with the exception of Tatum Boulevard & Shea Boulevard, Tatum Boulevard & Beryl Avenue/Tatum Corporate Center Driveway.

The intersection of *Tatum Boulevard and Shea Boulevard* is evaluated to operate at LOS E during the PM peak hour. This is due to high traffic volumes compared to its capacity, particularly the northbound left turn.

The intersection of *Tatum Boulevard & Beryl Avenue/Tatum Corporate Center Driveway* is evaluated to operate with delays in several movements during the PM peak hour. Poor levels of service during peak hours is not uncommon on side street approaches to major arterial roadways.

PROPOSED IMPROVEMENTS

DESCRIPTION

The redevelopment will consist of three phases between opening year 2019 and horizon year 2024. The proposed medical center will be composed of 91,318 net SF once fully built out.

PHASING AND INTENSITY

The redevelopment will be built out in three phases. Phase 1 consists of 18,697 SF medical use. Phase 2 adds 15,821 SF for a total of 34,518. Phase 3 adds 56,800 SF for the total of 91,318 SF. Phase 1 is expected to open in 2019 and Phase 3 is anticipated to be completed by 2024.

SITE ACCESS

Access to the redeveloped building will be via the three (3) existing driveways listed below:

- Tatum Boulevard and Fry's Driveway (north)/ Medical Center
- Medical Center Driveway and Beryl Avenue
- Albertson's Driveway/Medical Center and Shea Boulevard

The driveways were previously described in the existing conditions section. The proposed site plan is displayed in **Figure 4**.

TRIP GENERATION

Generated trips were estimated for the proposed improvements at Mountain View Medical Center were estimated utilizing the data given in the latest (10th) edition of the Institute of Transportation Engineers' (ITE) *Trip Generation Manual* and the methodology discussed in the ITE *Trip Generation Handbook, 3rd Edition.* The *Trip Generation Manual* report contains data collected by various transportation professionals for a wide range of different land uses. The data are summarized in the report and average rates and equations have been established that correlate the relationship between an independent variable that describes the development size and generated trips for each categorized land use. The report provides information for daily and peak hour trips.

The Mountain View Medical Center improvements include the redevelopment of an existing 59,969–SF medical office land use to 91,318–SF medical office land use. The trips generated by Mountain View Medical Center were estimated with land use code 720 (medical offices) as there are various uses for the offices tenants have occupied. **Table 3** shows the anticipated number of trips generated at full buildout. Detailed trip generation worksheets are included in **Appendix D**.

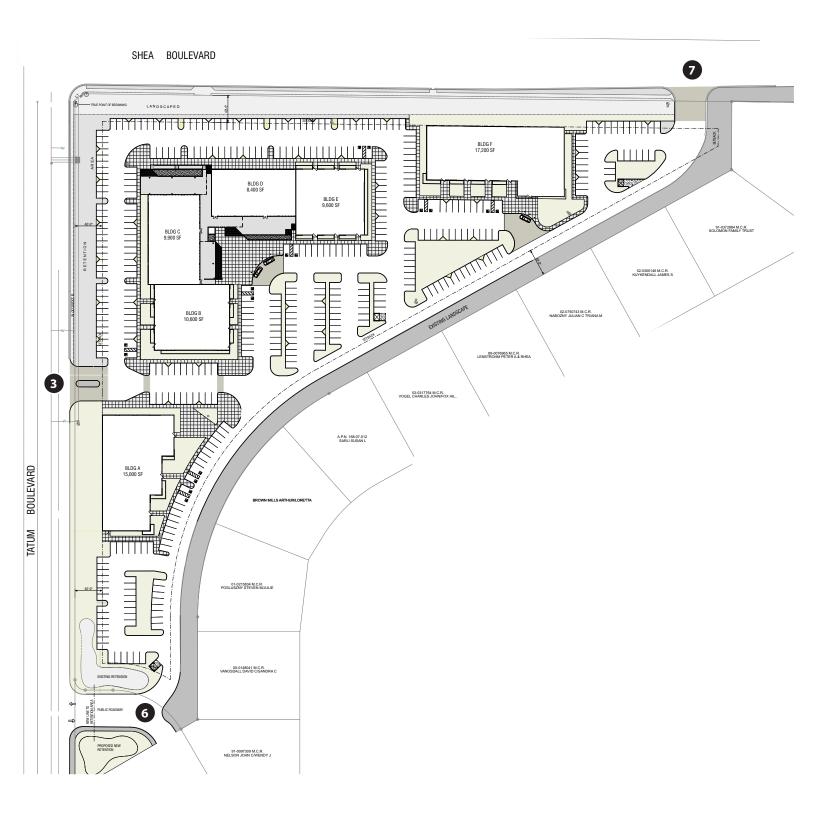


Figure 4: Site Plan and Access

Table 3 - Trip Generation Summary

					٧	Veekday	Genera	nerated Trips						
	ITE	Size	•	Daily	AM	Peak H	our	PM	Peak H	our				
Land Use	Code	Quantity	Units	Total	Enter	Exit	Total	Enter	Exit	Total				
Medical Offices	720	91.318	KSF	3,420	161	45	206	87	225	312				

After full buildout, the proposed redevelopment is anticipated to generate 3,420 weekday daily trips, 206 trips during the AM peak hour and 312 trips during the PM peak hour.

Since the total square footage of the Mountain View Medical Center has increased, the total number of trips to/from the site is anticipated to increase. **Table 4** shows the net increase of trips generated by the proposed expansion/redevelopment.

Table 4 - Trip Generation Comparison

					٧	Veekday	ed Trips					
	ITE	Size)	Daily	AM	Peak Ho	PM Peak Hour					
Land Use	Code	Quantity	Units	Total	Enter	Exit	Total	Enter	Exit	Total		
Medical Offices (new)	720	91.318	KSF	3,420	161	45	206	87	225	312		
Medical Offices (existing)	720	59.969	KSF	2,216	111	31	142	57	148	205		
Ne	New Trips Added					14	64	30	77	107		

The redevelopment is anticipated to add approximately 1,204 daily trips to the roadway network, with 64 additional trips during the AM peak hour and 107 additional trips during the PM peak hour.

TRIP DISTRIBUTION AND ASSISGNMENT

It is expected that the residential development will generate trips based on future population within a 10-mile radius of the site. Future total population within a 10-mile radius of the site, as predicted by the 2020 socio-economic data compiled by the Maricopa Association of Governments (MAG), was used as a basis to estimate trip distribution for the residential development. The resulting trip distribution percentages for the study area are shown are summarized in **Table 5**.

Table 5 - Trip Distribution

Roadway (To/From)	Trip Distribution
Tatum Blvd (North)	13%
Tatum Blvd (South)	30%
Shea Boulevard (East)	12%
Shea Blvd (West)	42%
Gold Dust Ave (West)	3%
Total	100%

The percentages presented in **Table 5** are also depicted in **Figure 5** and were applied to the site trips generated to determine the AM and PM peak hour site traffic at the intersections within the study area. The resulting site generated traffic for the proposed development is presented in **Figure 6** for horizon year 2024.

FUTURE BACKGROUND TRAFFIC

CivTech utilized the 2015 and 2011 average daily traffic on Tatum Boulevard north of Shea Boulevard and on Shea Boulevard west of Tatum Boulevard as published by the Maricopa Association of Governments (MAG). The 2011 and 2015 volumes resulted in an average annual growth rate of 0.9 percent on Tatum Boulevard and 3.2 percent on Shea Boulevard. The average of the two growth rates (2.1 percent) was applied annually to the adjusted existing traffic counts to represent regional growth. This correlates to an expansion factor of 1.129 for horizon year 2024. The 2024 background peak hour traffic volumes are shown in **Figure 7**.

TOTAL TRAFFIC

Total traffic was determined by adding the site generated traffic and the projected background traffic. Total AM and PM peak hour traffic volumes are depicted in **Figure 8** for the horizon year.

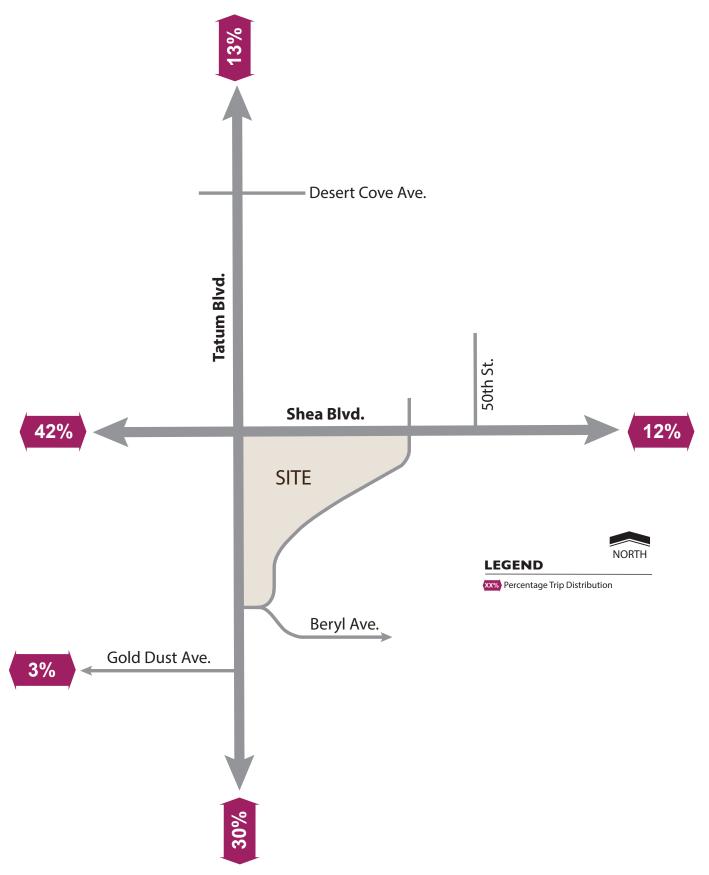
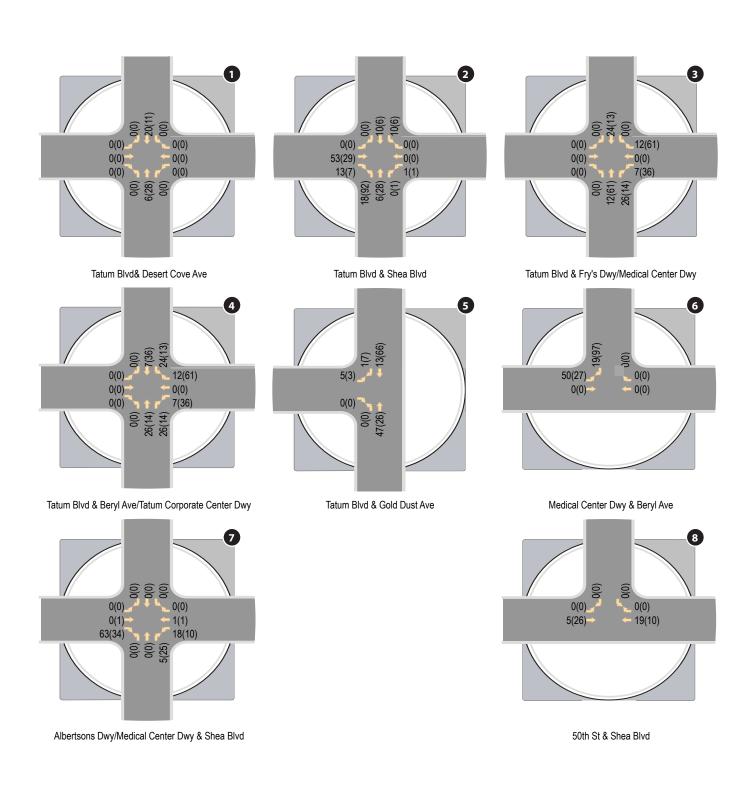



Figure 5: Vicinity Map

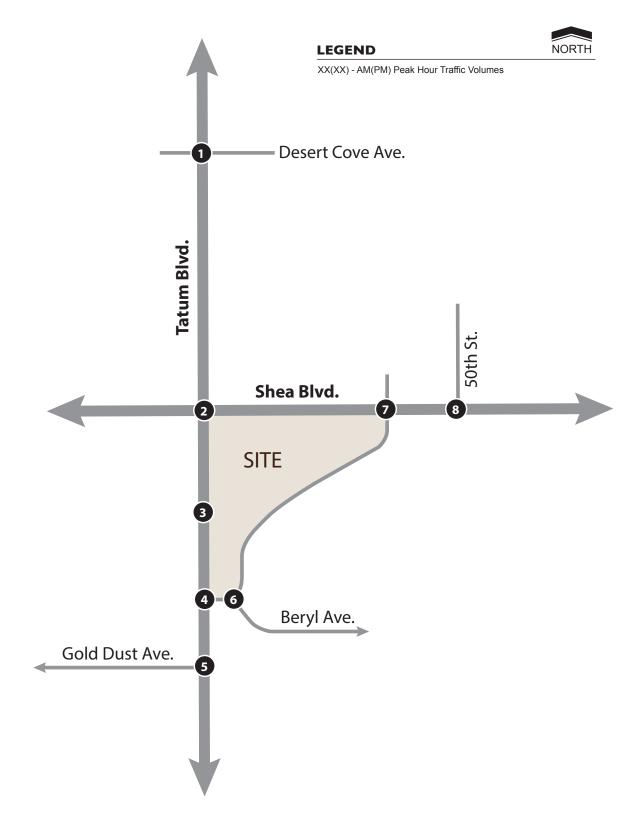
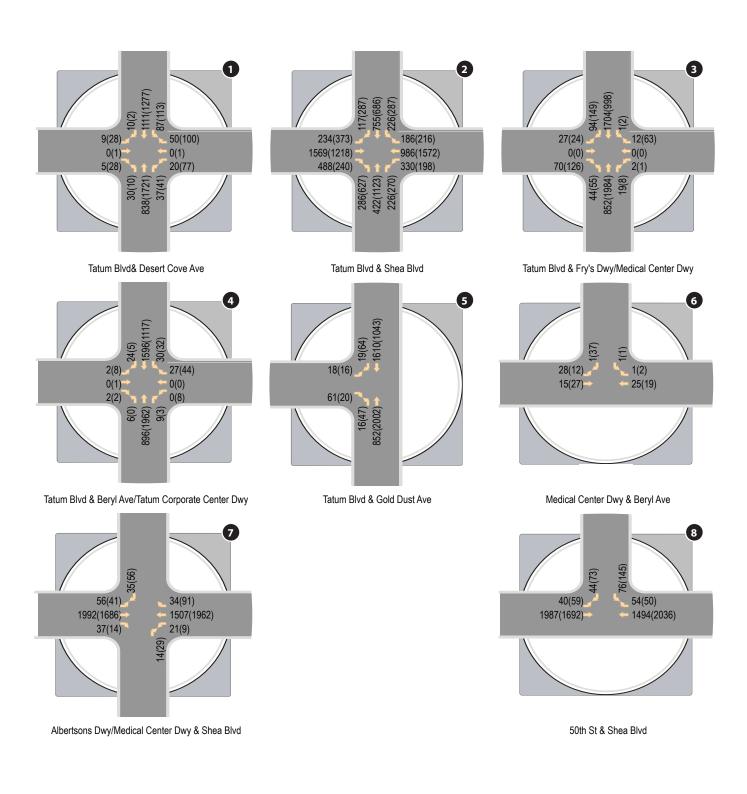



Figure 6: Site Generated Traffic Volumes

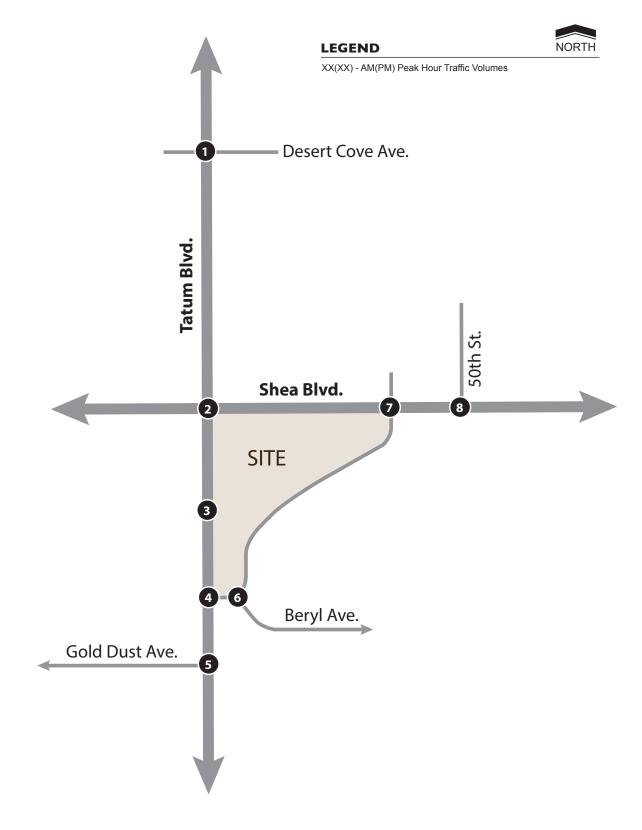
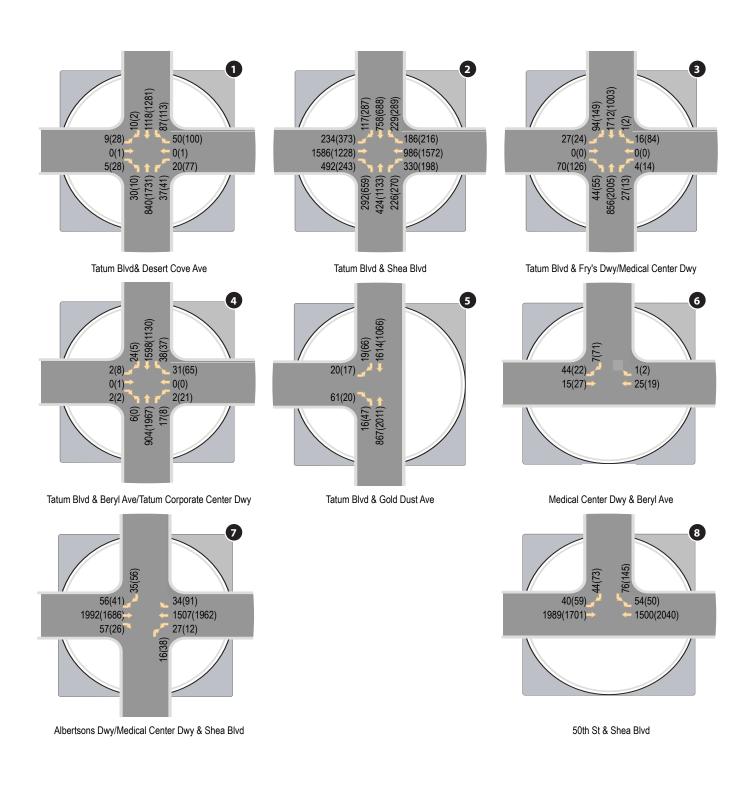



Figure 7: 2024 Background Traffic Volumes

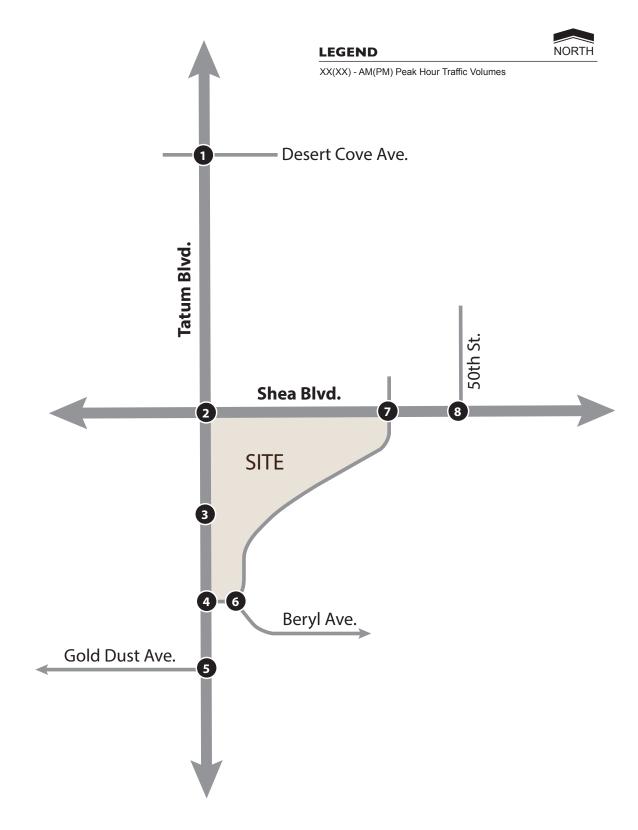


Figure 8: 2024 Total Traffic Volumes

INTERSECTION CAPACITY ANALYSIS

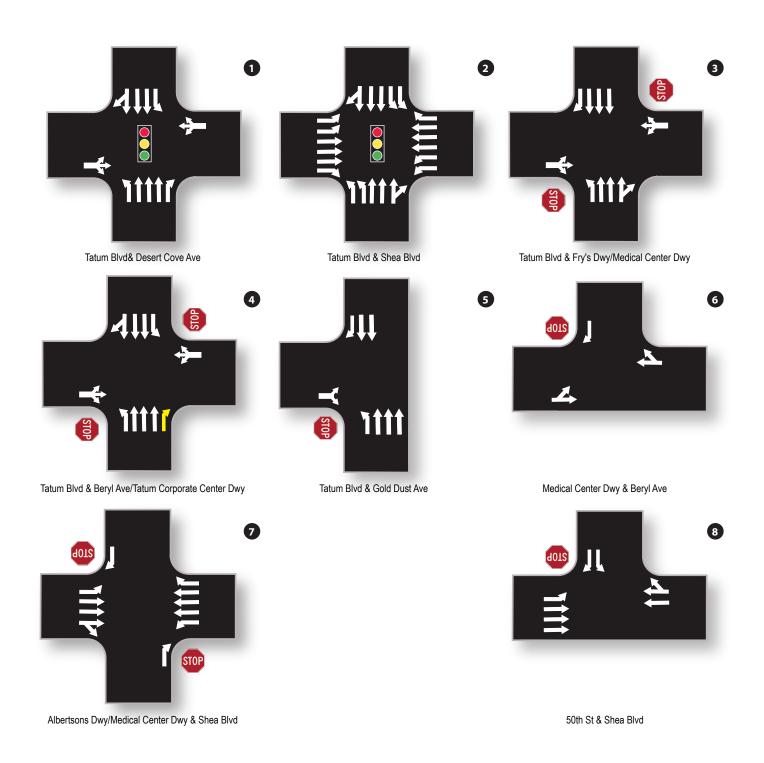
The overall intersection and approach levels of service are summarized in **Table 5** for the 2024 background and total traffic conditions. Detailed analysis worksheets for 2024 analysis can be found in **Appendix F**.

Table 6 - Peak Hour Levels of Service

			veis of Service	20	24
				AM (PI	
ID	Intersection	Stop Control	Approach	No-Build	Build
			NB	C(B)	C(B)
	Tatum Blvd. & Desert Cove		SB	C(B)	C(B)
1		Signal	EB	B(C)	B(C)
	Ave.		WB	B(C)	B(C)
			Overall	C(B)	C(B)
			NB	E(F)	E(F)
			SB	E(E)	E(E)
2	Tatum Blvd. & Shea Blvd	Signal	EB	D(E)	E(E)
		-	WB	D(F)	D(F)
			Overall	D(F)	D(F)
			NB Shared	B(B)	B(B)
3	Tatum Blvd. & Fry's Dwy.	2-way Stop	SB Thru/Right	B(E)	B(E)
3	/Medical Center Dwy.	(EB & WB)	EB Shared	C(B)	C(B)
			WB Shared	B(E)	B(F)
			NB Left	B(A)	B(A)
4	Tatum Blvd. & Beryl Ave.	2-way Stop	SB Left	C(F)	C(F)
4	/Tatum Corporate Center Dwy.	(EB & WB)	EB Shared	C(F)	C(F)
			WB Shared	B(F)	B(F)
5	Tatum Blvd. & Gold Dust Ave.	1-way Stop	NB Left	B(A)	B(A)
J	Tatuiti bivu. & Gold bust Ave.	(EB)	EB Shared	C(C)	C(C)
6	Medical Center Dwy. & Beryl	1-way Yield	SB Right	A(A)	A(A)
U	Ave.	(SB)	EB Left	A(A)	A(A)
			EB Left	B(C)	B(C)
7	Albertson's Dwy. /Medical	2-way Stop	WB Left	B(B)	B(B)
′	Center Dwy. & Shea Blvd.	(NB & SB)	NB Right	B(B)	B(B)
		·	SB Right	B(D)	B(D)
			SB	C(C)	C(C)
8	50 th St. & Shea Blvd.	Signal	EB	C(C)	C(C)
o l	JU St. & Silea bivu.	Signal	WB	D(F)	D(F)
			Overall	C(E)	C(E)

The results of the proposed conditions analysis summarized in **Table 6** indicates that half of the study intersections operate at overall LOS D or better during the peak hours while the other half do not during one or more peak hours. Nearly all reported LOS with the proposed redevelopment are identical to their respective LOS without the redevelopment.

The intersection of *Tatum Boulevard and Shea Boulevard* continues to operate poorly during the PM peak hour due to high traffic volumes compared to its capacity, particularly the northbound left turn. The delay of the intersection is aggregated with projected future growth. Any potential future mitigation is not considered the responsibility of the developer.



The intersections of *Tatum Boulevard & Fry's Driveway/Medical Center Driveway* and *Tatum Boulevard & Beryl Avenue/Tatum Corporate Center Driveway* have projected delays in the build and no build scenario. Poor levels of service during peak hours is not uncommon on side street approaches to major arterial roadways. No further restrictions are recommended.

The intersection of **50**th **Street and Shea Boulevard** has projected delays due to the westbound approach capacity. If the signal does not have pedestrian recall additional time can be allotted to the westbound approach, mitigating the projected delay.

The proposed lane configuration and signal control is illustrated in Figure 9.

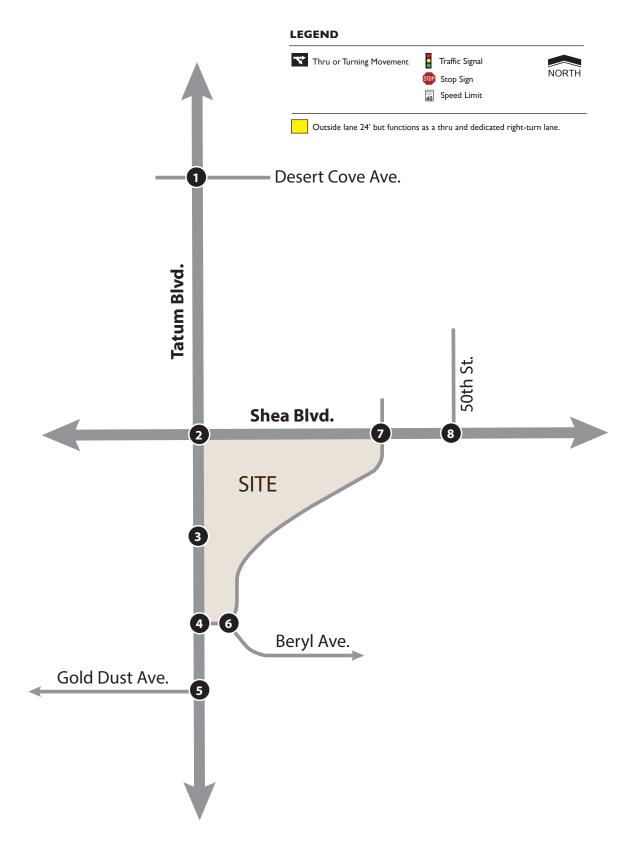


Figure 9: Proposed Lane Configurations and Traffic Controls

TRAFFIC SIGNAL WARRANT ANALYSIS

In an effort to determine the need for traffic control signal at the intersection of Tatum Boulevard and Beryl Road, traffic signal warrant analyses were performed for the existing year traffic volumes as well as projected future volumes at this intersection.

The traffic signal warrant analyses were accomplished in accordance with standard traffic signal warranting criteria found in the *Manual on Uniform Traffic Control Devices*, 2009 Edition (MUTCD). The MUTCD describes eight conditions under which a traffic signal might be warranted, designated Warrants 1 through 8, and indicates that, "The investigation of the need for a traffic control signal shall include an analysis of the applicable factors contained in the [eight] traffic signal warrants and other factors related to existing operation and safety at the study location" while cautioning that, "The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal."

The MUTCD suggests that traffic control signals should not be installed unless one or more of the signal warrants are met. However, the satisfaction of a warrant or warrants is not in itself justification for a signal. Every situation is unique and warrant guidelines must be supplemented by the effects of specific site conditions and the application of good engineering judgment. Installation of a traffic signal should improve the overall safety and/or operation of an intersection and should be considered only when deemed necessary by careful traffic analysis and after less restrictive solutions have been attempted. It was these criteria to which the anticipated approach traffic volumes at the two (2) study intersections were compared to determine whether or not a traffic signal is currently warranted.

Warrant 1: Eight-Hour Vehicular Volume

The Eight-Hour Vehicular Volume Warrant is intended for locations where either of the following two conditions, or a combination of both, exist for each of any 8 hours of an average day and is, thus, the principal reason to consider the installation of a traffic signal: a large volume of intersecting traffic or traffic volumes so heavy on the major street that entering vehicles suffer extensive delay or conflict.

Condition A. Minimum Vehicular Volume

Condition A, the Minimum Vehicular Volume, is intended for application at locations where a large volume of intersecting traffic is the principal reason to consider installing a traffic control signal. The need for a traffic control signal shall be considered if the vehicles per hour given in both of the 100 percent columns of Condition A in **Table 4C-1** of the MUTCD (reproduced below) occur on the major-street and the higher-volume minor-street approaches, respectively, to the intersection for each of any 8 hours of an average day.

Condition B: Interruption of Continuous Traffic

Condition B, the Interruption of Continuous Traffic, is intended for application at locations where the traffic volume on a major street is so heavy that traffic on a minor intersecting street suffers excessive delay or conflict in entering or crossing the major street. The need for a traffic control signal shall be considered if the vehicles per hour given in both of the 100 percent columns of Condition B in **Table 4C-1** of the MUTCD occur on the major-street and the higher-volume minor-street approaches, respectively, to the intersection for each of any 8 hours of an average day.

Combination of Conditions A and B

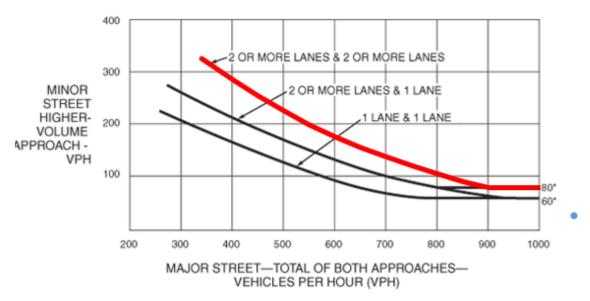
The combination of Conditions A and B is intended for application at locations where Condition A is not satisfied and Condition B is not satisfied and should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems. The need for a traffic control signal shall be considered if the vehicles per hour given in both of the 80 percent columns of Conditions A and Condition B in **Table 4C-1** of the MUTCD occur on the major-street and the higher-volume minor-street approaches, respectively, to the intersection for each of any 8 hours of an average day.

Table 7: MUTCD Table 4C-1. Warrant 1, Eight-Hour Vehicular Volume

Condition A—I	Minimum Vehic	ular Vo	lume						
			Vehicles per hour on						
Number o	f lanes for	Vehic	cles per	higher-volume					
moving traf	ffic on each	s	treet (to	mino	r-stree	t appro	oach		
appr	oach		appro	aches)		(on	e direc	tion or	ıly)
Major Street	Minor Street	100%ª	80%b	70%°	56% ^d	100%a	80%b	70%°	56% ^d
1	1	500	400	350	280	150	120	105	84
2 or more	1	600	480	420	336	150	120	105	84
2 or more	2 or more	600	480	420	336	200	160	140	112
1	2 or more	500	400	350	280	200	160	140	112
Condition B—	Interruption of	Continu	ious Tr	affic					
	-					Veh	icles p	er hou	r on
Number o	f lanes for	Vehic	cles per	hour on	major	higher-volume			
moving traf	ffic on each	s	treet (to	minor-street approach					
appr		appro	aches)		(on	e direc	tion or	ıly)	
Major Street	Minor Street	100%a	80%b	70% ^c	56% ^d	100%a	80%b	70% ^c	<u>56%⁴</u>
1	1	750	600	525	420	75	60	53	42
2 or more	1	900	720	630	504	75	60	53	42
2 or more	2 or more	900	720	630	504	100	80	70	56
1	2 or more	750	600	525	420	100	80	70	56

^a Basic minimum hourly volume.

^b Used for combination of Conditions A and B after adequate trial of other remedial measures.


^c May be used when the major-street speed exceeds 70 km/h or exceeds 40 mph or in an isolated community with a population of less than 10,000.

^d May be used for combination of Conditions A and B after adequate trial of other remedial measures when the majorstreet speed exceeds 70 km/h or exceeds 40 mph or in an isolated community with a population of less than 10,000.

Warrant 2: Four-Hour Vehicular Volume

Figure 4C-2. Warrant 2, Four-Hour Vehicular Volume (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

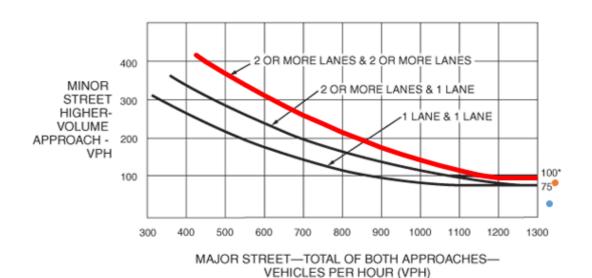
*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

	Major, both	Minor, larger	Approximate
Legend	approaches	approach	Threshold for Minor
 2024 AM Total 	2,201	28	80
 2024 PM Total 	2,678	73	80
not used			
not used			

Signal Warrant 2 is met?

2024 AM Total <u>No</u> 2024 PM Total <u>No</u>

The Four-Hour Vehicular Volume signal warrant conditions are intended to be applied where the volume of intersecting traffic is the principal reason to consider installing a traffic control signal. The need for a traffic control signal shall be considered if an engineering study finds that, for each of any 4 hours of an average day, the plotted points representing the vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach



(one direction only) all fall above the applicable curve in Figure 4C-1 (this and all other referenced figures are attached) for the existing combination of approach lanes.

Since the posted or statutory speed limit or the 85th-percentile speed on the major street exceeds 70 km/h or exceeds 40 mph, Figure 4C-2 may be used in place of Figure 4C-1. Since the posted speed limit on Dove Valley Road is 35 mph and the design speed that is being considered is 40 mph, Figure 4C-2 was used.

Warrant 3: Peak-Hour

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Legend	Major, both approaches	Minor, larger approach	Approximate Threshold for Minor
2024 AM Total	2,587	33	100
2024 PM Totalnot used	3,147	86	100
not used			

Signal Warrant	3 is met?
2024 AM Total	<u>No</u>
2024 PM Total	No

The Peak Hour signal warrant is intended for use at a location where traffic conditions are such that for a minimum of 1 hour of an average day, the minor-street traffic suffers undue delay when entering or crossing the major street. It shall be applied only in unusual cases, such as office complexes, manufacturing plants, industrial complexes, or high-occupancy vehicle facilities that attract or discharge large numbers of vehicles over a short time.

The need for a traffic control signal shall be considered if an engineering study finds that the criteria in either of the following two categories are met:

- A. If all three of the following conditions exist for the same 1 hour (any four consecutive 15-minute periods) of an average day:
 - 1. The total stopped time delay experienced by the traffic on one minor-street approach (one direction only) controlled by a STOP sign equals or exceeds: 4 vehicle-hours for a one-lane approach; or 5 vehicle-hours for a two-lane approach; and
 - 2. The volume on the same minor-street approach (one direction only) equals or exceeds 100 vehicles per hour for one moving lane of traffic or 150 vehicles per hour for two moving lanes; and
 - 3. The total entering volume serviced during the hour equals or exceeds 650 vehicles per hour for intersections with three approaches or 800 vehicles per hour for intersections with four or more approaches.
- B. The plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach (one direction only) for 1 hour (any four consecutive 15-minute periods) of an average day falls above the applicable curve in Figure 4C-3 for the existing combination of approach lanes.

Category B was used to determine the relevance of the peak hour warrant for the study intersections.

If the posted or statutory speed limit or the 85th-percentile speed on the major street exceeds 70 km/h or exceeds 40 mph, Figure 4C-4 may be used in place of Figure 4C-3 to satisfy the criteria in the second category of the Standard. Since the posted speed limit on Dove Valley Road is 35 mph and the design speed considered for this study is 40 mph, Figure 4C-4 was used.

Buildout year 2024 peak hour volumes were used as a basis for warranting a signal at the intersection of Tatum Boulevard and Beryl Road. This approach uses the same signal warrants previously stated with hourly adjustment factors used to convert the peak hour to approximate 24-hour approach volumes. A right-turn reduction factor was not utilized for this study to conservatively assess the need for a signal. As shown in the above graphics, volume thresholds are not anticipated to be met during study peak hours. Signalization of this intersection will therefore be evaluated in the "Intersection Capacity Analysis" section of this report. Worksheets used for signal warrant analysis at all study intersections are included in **Appendix G.**

QUEUING ANALYSIS

Right-Turn Declaration Lanes.

Per *The Town of Paradise Valley Traffic Impact Analysis Criteria, May 2015,* the need for a deceleration lane is determined with criteria. The proposed site conditions must meet a **minimum of three** of the following criteria:

- 1. At least 5,000 vehicles per day are using or are expected in the near future (five years after the development is build out) to be using the adjacent street.
- 2. The posted speed limit is 35 mph or the $85^{\rm th}$ percentile speed limit is greater than 35 mph.
- 3. At least 1,000 vehicles per day are using or are expected to use the driveways(s) for the development or adjacent developments(s) (existing of future).
- 4. At least 90 vehicles are expected to make right turns into the driveway(s) for a one-hour period for the development or adjacent developments (existing or future).

Table 8 - Right-Turn Lane Criteria

	Peak Period	Criteria Met?							
Intersection	Right-turn Volume AM (PM)	Criteria 1	Criteria 2	Criteria 3	Criteria 4				
Tatum Blvd & Fry's Dwy/Medical Center Dwy	NB – 27(13)	Yes	Yes	No	No				
Tatum Blvd & Beryl Avenue	NB – 17(8)	Yes	Yes	No	No				
Albertson's Dwy/Medical Center Dwy & Shea Blvd	EB – 57(26)	Yes	Yes	No	No				

Turn Lane Storage

Adequate turn storage should be supplied on any approach where turn lanes are permitted and/or warranted. A queuing analysis was prepared according to the methodology documented in *AASHTO's A Policy on Geometric Design of Highways and Streets*. The study intersections were analyzed to determine the left-turn and right-turn storage needed to accommodate the expected traffic volumes in the 2024 horizon year.

The storage length for a turn lane is typically estimated as the length required to hold the average number of arriving vehicles per one and one-half minutes, where unsignalized, or per two signal cycles, where signalized. The formulas used for the calculations are shown below, and the resulting turn lane storage requirements for the

28

-

¹ The American Association of Highway and Transportation Officials on pages 718-719 of its publication, *Geometric Design of Highways and Streets* ("AASHTO Green Book"), indicates that storage length for a turn lane, exclusive of taper, "should usually be based on one and one-half to two times the average number of vehicles that would store per cycle" at a signalized intersection.

study intersections are summarized in **Table 8** on the following page. A detailed worksheet is included in **Appendix H**.

For signalized intersections, storage length is determined by the following formula:

Storage Length = [1.5 x (veh/hr)/(cycles/hr)] x 25 feet

For unsignalized intersections, storage length is determined by the following formula:

Storage Length = $[(veh/hr)/(30 periods/hr)] \times 25 feet$

Table 9 - Turn Lane Queue Storage

		Intersection		20	24 Queue S	torage
ID	Intersection	Control	Movement	Existing ⁽¹⁾	AASHTO	Recommended
	Tatum Blvd. & Desert		NB Left	100'	50'	100'
1		Signal	SB Left	135'	125'	135'
	Cove Ave.		NB Right	150'	50'	150'
			NB Left	190'(2)	525' ⁽²⁾	190'(2)(3)(4)(5)
			SB Left	195' ⁽²⁾	225' ⁽²⁾	195' ⁽²⁾⁽³⁾⁽⁴⁾
2	Tatum Blvd. & Shea Blvd	Cianal	EB Left	195' ⁽²⁾	275' ⁽²⁾	195' ⁽²⁾⁽³⁾⁽⁴⁾
-	Talum bivu. & Snea bivu	Signal	WB Left	275' ⁽²⁾	250' ⁽²⁾	275'
			EB Right	195'	725'	195' ⁽³⁾⁽⁶⁾
			WB Right	245'	325'	245'(3)(6)
3	Tatum Blvd. & Fry's Dwy.	2-way Stop	NB Left	105'	50'	105'
3	/Medical Center Dwy.	(EB & WB)	SB Right	150'	125'	150'
	Tatum Blvd. & Beryl Ave.	2-way Stop	NB Left	TWLTL	25'	TWLTL
4	/Tatum Corporate Center	(EB & WB)	SB Left	TWLTL	50'	TWLTL
	Dwy.	(ED & WD)	SB Right	245'	25'	245'
5	Tatum Blvd. & Gold Dust	1-way Stop	NB Left	TWLTL	50'	TWLTL
5	Ave.	(EB)	SB Right	245'	75'	245'
	Albertson's Dwy. /Medical	2-way Stop	EB Left	115'	50'	115'
7	Center Dwy. & Shea Blvd.	(NB & SB)	WB Left	195'	50'	195'
	Center Dwy. & Shea bivd.	(ND & 3D)	EB Right	155'	100'	155'
			EB Left	95'	75'	95'
8	50 th St. & Shea Blvd.	Signal	SB Right	75'	100'	75'
			SB Left	75'	200'	75'

- (1) Measured from stop bar using Google Earth
- (2) Dual left-turn lanes
- (3) Developer does not propose modifying this lane.
- (4) The width of the dual turn lane allows additional storage within the gap.
- (5) Street is dashed 245' to indicate a queuing lane prior to the solid striped dual turn lanes.
- (6) Storage may be decreased for right turns do to less conflict during green phase and right turn on red.

The development will utilize existing driveways and lane configurations. No changes to existing turn lanes are recommended as part of this development.

CONCLUSIONS

The following conclusions and recommendations have been documented in this study:

- The redevelopment will be built out in three phases. Phase 1 consists of 18,697 SF medical use. Phase 2 adds 15,821 SF for a total of 34,518. Phase 3 adds 56,800 SF for the total of 91,318 SF.
- The redevelopment is anticipated to add approximately 1,204 daily trips to the roadway network, with 64 additional trips during the AM peak hour and 107 additional trips during the PM peak hour.
- The results of the existing conditions analysis summarized in **Table 2** indicates that all study intersections operate at overall LOS D or better with the exception of Tatum Boulevard & Shea Boulevard, Tatum Boulevard & Beryl Avenue/Tatum Corporate Center Driveway.
 - The intersection of *Tatum Boulevard and Shea Boulevard* is evaluated to operate at LOS E during the PM peak hour. This is due to high traffic volumes compared to its capacity, particularly the northbound left turn.
 - The intersection of *Tatum Boulevard & Beryl Avenue/Tatum Corporate Center Driveway* is evaluated to operate with delays in several movements during the PM peak hour. Poor levels of service during peak hours is not uncommon on side street approaches to major arterial roadways.
- The results of the proposed conditions analysis summarized in **Table 6** indicates that half of the study intersections operate at overall LOS D or better during the peak hours while the other half do not during one or more peak hours. Nearly all reported LOS with the proposed redevelopment are identical to their respective LOS without the redevelopment.
- During a work study session, several neighborhood concerns were expressed. A simulation model was prepared in response to the concerns to help address the issues of bus stops, queueing, and signalization in close proximity to the intersection of Tatum Boulevard and Shea Boulevard.
 - The intersection of *Tatum Boulevard and Shea Boulevard* continues to operate with heavy delays during the PM peak hour due to high traffic volumes compared to its capacity, particularly the northbound left-turn. The delay of the intersection is aggregated with projected future growth. Any potential future mitigation is not considered the responsibility of the developer.
 - To help mitigate future LOS it is suggested all U-turns be restricted at the intersection of Tatum Boulevard and Shea Boulevard to allow for signal optimization and reallocation of green time for each peak hour.

- Currently bus bays are not provided in or around the proposed site; busses stop in lane with an existing bus stop located 250-feet south of Beryl Road along Tatum Boulevard. It should also be noted that an existing bus stop currently exists along the northern sit frontage on Shea Boulevard approximately 240-feet east of Tatum Boulevard (from center). The simulation analysis shows that a bus frequency of 15-minute headways does not adversely effect delays for more than one signal cycle. Since the existing traffic patterns are not affected, additional bus stops/bays are not warranted along the Tatum Boulevard or Shea Boulevard site frontage. There may be other warranting criteria for the addition of bus bays such as the number of riders using each of these stops.
- The intersections of *Tatum Boulevard & Fry's Driveway/Medical Center Driveway* and *Tatum Boulevard & Beryl Avenue/Tatum Corporate Center Driveway* have projected delays in the build and no build scenario on their side street approach to the major street. Poor levels of service during peak hours are not uncommon on side street approaches to major arterial roadways. A signal warrant analysis was completed at this study location, which did not meet the four or eight-hour signal warrants. Therefore, a signal/traffic light is not recommended at this site location.
- The intersection of 50th Street and Shea Boulevard has projected delays due to the westbound approach capacity. If the signal does not have pedestrian recall additional time can be allotted to the westbound approach, mitigating the projected delay.
- The development will utilize existing driveways and lane configurations. No changes to existing turn lanes are recommended as part of this development.

LIST OF REFERENCES

- A Policy on Geometric Design of Highways and Streets, American Association of State Highway and Transportation Officials, Washington, D.C., 2011.
- Design and Safety of Pedestrian Facilities, Institute of Transportation Engineers, Washington, D.C., March 1998.
- Highway Capacity Manual. Transportation Research Board, National Research Council, Washington, D.C., 2010.
- Manual on Uniform Traffic Control Devices. U.S. Department of Transportation, Federal Highways Administration, Washington, D.C., 2009.
- *Trip Generation Manual, 10th Edition*, Institute of Transportation Engineers, Washington, D.C., 2016.
- *Trip Generation Handbook, 3rd Edition*, Institute of Transportation Engineers, Washington, D.C., 2016.

Traffic Impact Analysis (TIA) Criteria, Town of Paradise Valley, 2015.

TECHNICAL APPENDIX

APPENDIX A: REVIEW COMMENTS

APPENDIX B: EXISTING TRAFFIC COUNTS

APPENDIX C: EXISTING CAPACITY ANALYSIS

APPENDIX D: TRIP GENERATION CALCULATIONS

APPENDIX E: BACKGROUND TRAFFIC CALCULATIONS

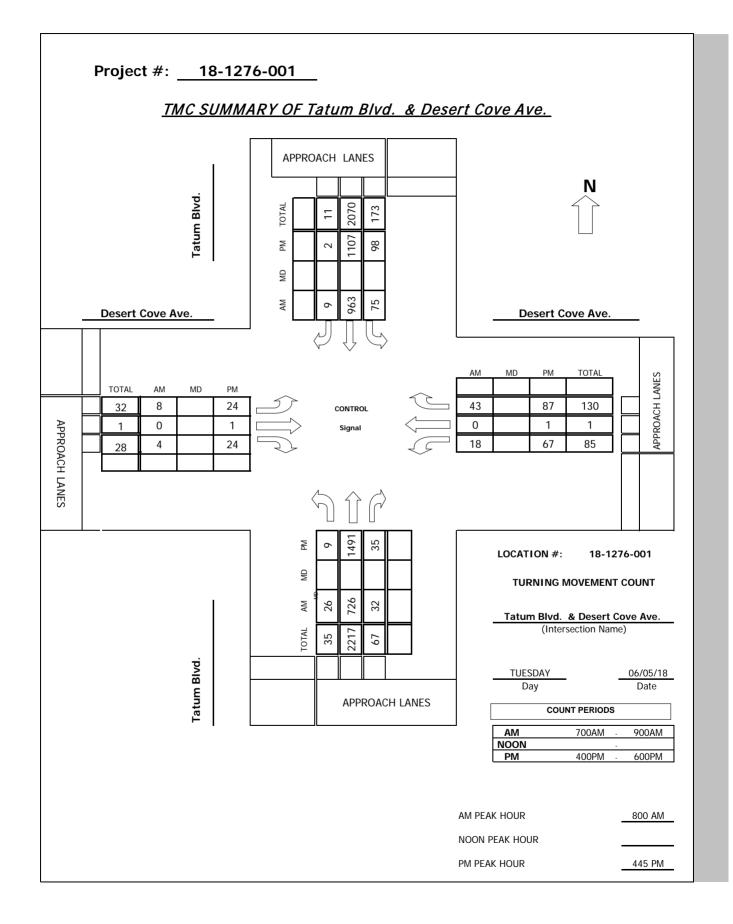
APPENDIX F: PEAK HOUR TRAFFIC ANALYSIS

APPENCIX G: SIGNAL WARRANT ANALYSIS

APPENDIX H: QUEUE LENGTH ANALYSIS

APPENDIX A

REVIEW COMMENTS AND RESPONSES (RESERVED)



APPENDIX B

EXISTING TRAFFIC COUNTS

N-S STREET: Tatum Blvd. DATE: 06/05/18 LOCATION: Phoenix

E-W STREET: Desert Cove Ave. DAY: TUESDAY PROJECT# 18-1276-001

						11.15		107001			(E0TD 01		
	NC	ORTHBO	UND	SC	OUTHBO	UND	E.	EASTBOUND			WESTBOUND		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
LANES:	1	3	0	1	3	0	0	1	0	0	1	0	
6:00 AM													
6:15 AM													
6:30 AM													
6:45 AM													
7:00 AM	5	114	4	9	271	3	0	0	0	7	0	9	422
7:15 AM	3	124	3	6	319	4	0	1	0	4	0	2	466
7:30 AM	7	152	2	13	293	4	0	0	3	2	1	9	486
7:45 AM	5	146	8	12	251	2	0	0	0	3	0	7	434
8:00 AM	5	158	14	13	267	2	1	0	1	5	0	10	476
8:15 AM	4	177	5	22	247	4	0	0	0	4	0	8	471
8:30 AM	8	194	7	22	252	1	3	0	3	4	0	12	506
8:45 AM	9	197	6	18	197	2	4	0	0	5	0	13	451
9:00 AM													
9:15 AM													
9:30 AM													
9:45 AM													
10:00 AM													
10:15 AM													
10:30 AM													
10:45 AM													
11:00 AM													
11:15 AM													
11:30 AM													
11:45 AM													

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	l
Volumes	46	1262	49	115	2097	22	8	1	7	34	1	70	3712	l
Approach %	3.39	93.00	3.61	5.15	93.87	0.98	50.00	6.25	43.75	32.38	0.95	66.67		l
App/Depart	1357	/	1340	2234	/	2138	16	/	165	105	/	69		l

AM Peak Hr Begins at: 800 AM

PEAK

Volumes 26 726 32 75 963 1904 3.32 92.60 4.08 7.16 91.98 0.86 66.67 0.00 33.33 29.51 Approach %

PEAK HR.

0.941 FACTOR: 0.925 0.928 0.500 0.847

CONTROL:

Signal COMMENT 1:

GPS: 33.586296, -111.977893

Intersection Turning Movement

N-S STREET: Tatum Blvd. DATE: 06/05/18 LOCATION: Phoenix

0

E-W STREET: Desert Cove Ave. DAY: TUESDAY PROJECT# 18-1276-001

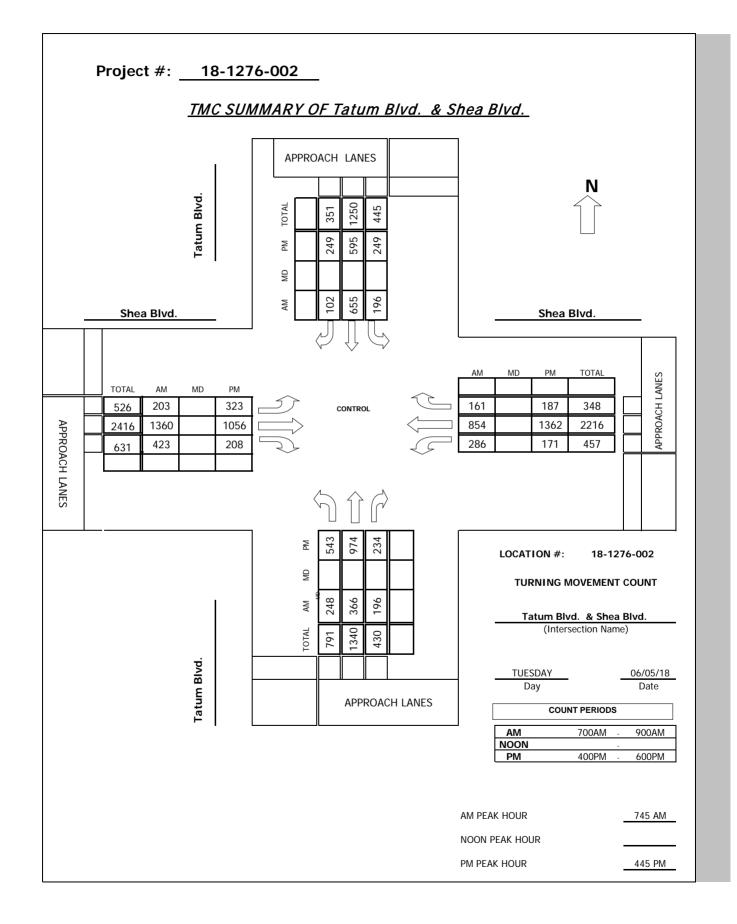
	NC	ORTHBO	- IND		OUTHBOL	LIND		ASTBOU	IND		/ESTBOL	IND	
	NC	JK I HBO	טאט	50	UTHBU	טאנ	E.F	421BO0	טאנ	VV	ESTROC	טאנ	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
LANES:	1	3	0	1	3	0	0	1	0	0	1	0	
1:00 PM													
1:15 PM													
1:30 PM													
1:45 PM													
2:00 PM													
2:15 PM													
2:30 PM													
2:45 PM													
3:00 PM													
3:15 PM													
3:30 PM													
3:45 PM													
4:00 PM	6	356	7	22	249	3	4	0	4	8	1	24	684
4:15 PM	0	326	4	25	245	2	7	0	1	14	0	17	641
4:30 PM	5	321	12	18	238	0	6	0	3	19	0	25	647
4:45 PM	6	356	10	29	325	1	10	0	13	22	1	23	796
5:00 PM	0	397	9	21	278	1	6	0	7	19	0	25	763
5:15 PM	2	381	8	23	267	0	5	1	3	14	0	21	725
5:30 PM	1	357	8	25	237	0	3	0	1	12	0	18	662
5:45 PM	1	274	6	25	190	0	2	0	3	7	0	22	530
6:00 PM													
6:15 PM													
6:30 PM													
6:45 PM													
TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
	0.4	07/0		400	0000				٥.	445		475	E 4 4 0

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	21	2768	64	188	2029	7	43	1	35	115	2	175	5448
Approach %	0.74	97.02	2.24	8.45	91.23	0.31	54.43	1.27	44.30	39.38	0.68	59.93	
App/Depart	2853	/	2986	2224	/	2179	79	/	253	292	/	30	

PM Peak Hr Begins at: 445 PM

PEAK

Volumes 9 1491 35 98 1107 2 24 1 24 67 1 87 2946 Approach % 0.59 97.13 2.28 8.12 91.71 0.17 48.98 2.04 48.98 43.23 0.65 56.13


PEAK HR.

FACTOR: 0.945 0.850 0.533 0.842 0.925

CONTROL: Signal COMMENT 1: 0

GPS: 33.586296, -111.977893

N-S STREET: Tatum Blvd.

DATE: 06/05/18

LOCATION: Phoenix

E-W STREET: Shea Blvd.

DAY: TUESDAY

PROJECT# 18-1276-002

	NORTHBOUND			SOUTHBOUND			EASTBOUND			WESTBOUND			
LANES:	NL 2	NT 3	NR 0	SL 2	ST 3	SR 0	EL 2	ET 3	ER 1	WL 2	WT 3	WR 1	TOTAL
7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM	47 61 49 40 61 63 84 58	55 68 112 71 101 98 96 117	37 37 56 41 53 46 56 59	35 57 67 40 58 49 49 48	184 213 191 163 197 143 152 104	23 15 24 19 24 27 32 42	34 30 45 36 43 56 68 75	277 326 316 354 310 360 336 275	94 133 114 123 115 94 91 67	64 72 72 69 72 59 86 70	185 183 207 182 204 232 236 194	23 22 39 39 37 43 42 51	1058 1217 1292 1177 1275 1270 1328 1160

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	ı
Volumes	463	718	385	403	1347	206	387	2554	831	564	1623	296	9777	ı
Approach %	29.57	45.85	24.58	20.60	68.87	10.53	10.26	67.71	22.03	22.71	65.36	11.92		ı
App/Depart	1566	/	1401	1956	/	2742	3772	/	3342	2483	/	2292		ı

AM Peak Hr Begins at: 745 AM

PEAK

Volumes 248 366 196 196 655 102 203 1360 423 286 854 5050 30.62 45.19 24.20 20.57 68.73 10.70 10.22 68.48 21.30 21.98 65.64 12.38 Approach %

PEAK HR.

0.951 FACTOR: 0.858 0.854 0.968 0.894

CONTROL:

GPS:

Signal

COMMENT 1:

33.582677, -111.977906

Intersection Turning Movement

N-S STREET: Tatum Blvd. DATE: 06/05/18 LOCATION: Phoenix

E-W STREET: Shea Blvd. DAY: TUESDAY PROJECT# 18-1276-002

	NO	RTHBO	UND	SO	UTHBO	JND	E	ASTBOU	ND	W	ESTBOL	JND	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
LANES:	2	3	0	2	3	0	2	3	1	2	3	1	
1:00 PM													
1:15 PM													
1:30 PM													
1:45 PM													
2:00 PM													
2:15 PM													
2:30 PM													
2:45 PM													
3:00 PM													
3:15 PM													
3:30 PM													
3:45 PM													
4:00 PM	130	208	52	54	139	46	69	216	47	63	336	78	1438
4:15 PM	113	197	55	53	138	46	72	267	50	44	302	48	1385
4:30 PM	117	210	46	48	133	57	81	280	35	40	340	63	1450
4:45 PM	134	210	52	64	165	66	86	245	51	39	321	55	1488
5:00 PM	140	272	72	74	154	65	69	282	53	44	356	38	1619
5:15 PM	147	249	53	59	148	60	81	265	59	47	344	32	1544
5:30 PM	122	243	57	52	128	58	87	264	45	41	341	62	1500
5:45 PM	98	161	52	51	101	34	81	226	40	43	277	50	1214
6:00 PM													
6:15 PM													
6:30 PM													
6:45 PM													
TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	1001	1750	439	455	1106	432	626	2045	380	361	2617	426	11638
Approach 0/	21 20	E 4 O 4	12.74					47.02			74 00		

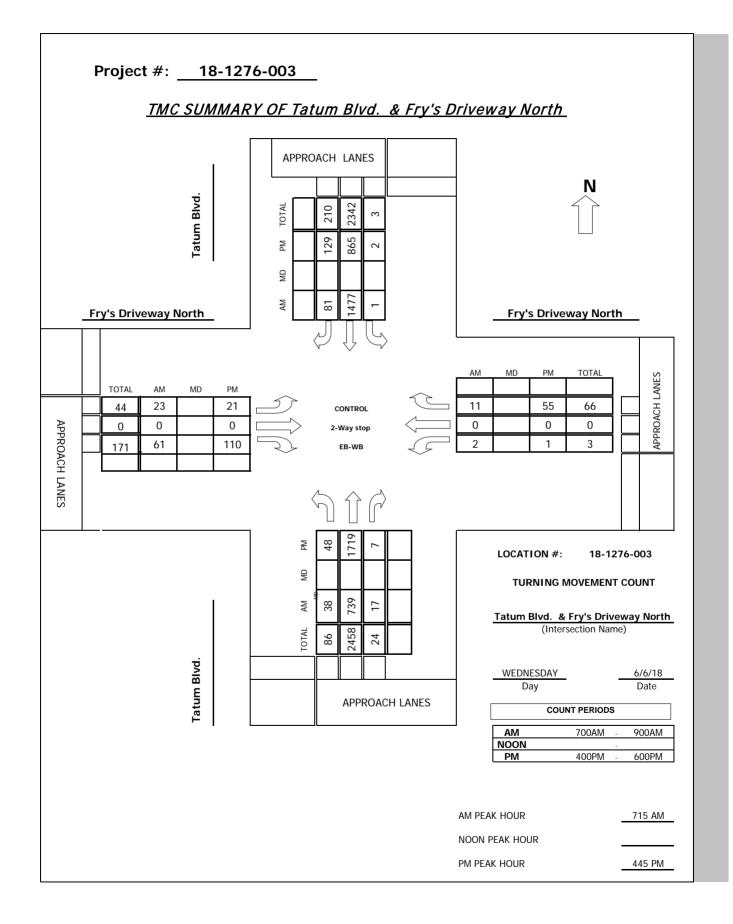
TOTAL	NL	ΝI	NR	SL	ST	SR	ŁL	ΕI	ER	WL	W I	WR	TOTAL
Volumes	1001	1750	439	455	1106	432	626	2045	380	361	2617	426	11638
Approach %	31.38	54.86	13.76	22.83	55.49	21.68	20.52	67.03	12.45	10.61	76.88	12.51	
App/Depart	3190	/	2802	1993	/	1847	3051	/	2939	3404	/	4050	

PM Peak Hr Begins at: 445 PM

PEAK

 Volumes
 543
 974
 234
 249
 595
 249
 323
 1056
 208
 171
 1362
 187
 6151

 Approach %
 31.01
 55.63
 13.36
 22.78
 54.44
 22.78
 20.35
 66.54
 13.11
 9.94
 79.19
 10.87


PEAK HR.

FACTOR: 0.904 0.926 0.980 0.968 0.950

CONTROL: Signal COMMENT 1: 0

GPS: 33.582677, -111.977906

N-S STREET: Tatum Blvd. DATE: 6/6/18 LOCATION: Phoenix

E-W STREET: Fry's Driveway North DAY: WEDNESDAY PROJECT# 18-1276-003

	NO	ORTHBO	UND	SC	OUTHBO	JND	E	ASTBOL	JND	W	'ESTBOL	JND	
LANES:	NL 1	NT 3	NR 0	SL 0	ST 3	SR 1	EL 0	ET 1	ER 0	WL 0	WT 1	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM	_												
7:00 AM 7:15 AM 7:30 AM	5 11 8	138 186 199	4 2 5	0 0 0	345 404 364	10 15 22	3 4 9	0 0 0	15 15 2	0 0 0	0 0 0	2 0 3	522 637 612
7:45 AM 8:00 AM 8:15 AM	6 13 10	158 196 201	6 4 2	0 1 3	347 362 281	23 21 18	4 6 11	0 0 1	17 27 24	1 1 1	0 0 1	2 6 6	564 637 559
8:30 AM 8:45 AM 9:00 AM 9:15 AM	11 7	209 225	5 5	1 1	320 228	19 25	8	0	17 16	3 1	0	4 9	597 521
9:30 AM 9:45 AM 10:00 AM 10:15 AM													
10:15 AM 10:30 AM 10:45 AM 11:00 AM 11:15 AM													
11:30 AM 11:45 AM													

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	ĺ
Volumes	71	1512	33	6	2651	153	49	1	133	7	1	32	4649	ĺ
Approach %	4.39	93.56	2.04	0.21	94.34	5.44	26.78	0.55	72.68	17.50	2.50	80.00		ĺ
App/Depart	1616	/	1593	2810	/	2791	183	/	40	40	/	225		

AM Peak Hr Begins at: 715 AM

PEAK

Volumes 38 739 17 1 1477 81 23 0 61 2 0 11 2450 Approach % 4.79 93.07 2.14 0.06 94.74 5.20 27.38 0.00 72.62 15.38 0.00 84.62

PEAK HR.

FACTOR: 0.932 0.930 0.636 0.464 0.962

CONTROL: 2-Way Stop (EB-WB)

COMMENT 1:

GPS: 33.581381, -111.977890

Intersection Turning Movement

N-S STREET: Tatum Blvd. DATE: 6/6/18 LOCATION: Phoenix

0
E-W STREET: Fry's Driveway North DAY: WEDNESDAY PROJECT# 18-1276-003

	NO	ORTHBO	UND	SC	DUTHBO	UND	E,	ASTBOL	JND	W	'ESTBOL	JND	
LANES:	NL 1	NT 3	NR 0	SL 0	ST 3	SR 1	EL 0	ET 1	ER 0	WL 0	WT 1	WR 0	TOTAL
1:00 PM													
1:15 PM													
1:30 PM													
1:45 PM													
2:00 PM													
2:15 PM													
2:30 PM													
2:45 PM													
3:00 PM													
3:15 PM													
3:30 PM													
3:45 PM	44	200	-	•	004	F.(-	•	00	4	•	10	704
4:00 PM	11	388	5	0	204	56	7	0	20	1	0	12	704
4:15 PM	12	358	3	2	214	25	5	0	25	0	0	9	653
4:30 PM	10	365	3	0	193	37	6	0	24	1	0	11	650
4:45 PM	8	387	1	2	229	27	3	0	31	0	0	21	709
5:00 PM 5:15 PM	7 19	494	3	0	215 235	37 35	3 7	0	34 17	0	0	18 7	811 752
5:15 PM 5:30 PM	19 14	431 407	1	0	235 186	30		0	28	0	0 0	9	752 685
5:30 PM 5:45 PM	14	306	2 0	0	172	30 29	8 4	0	28 27	1 1	0	2	552
6:00 PM	- 11	300	U	U	1/2	47	4	U	21	1	U	_	332
6:15 PM													
6:30 PM													
6:45 PM													
OTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
olumes	92	3136	18	4	1648	276	43	0	206	4	0	89	5516

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	92	3136	18	4	1648	276	43	0	206	4	0	89	5516
Approach %	2.83	96.61	0.55	0.21	85.48	14.32	17.27	0.00	82.73	4.30	0.00	95.70	
App/Depart	3246	/	3268	1928	/	1858	249	/	22	93	/	368	

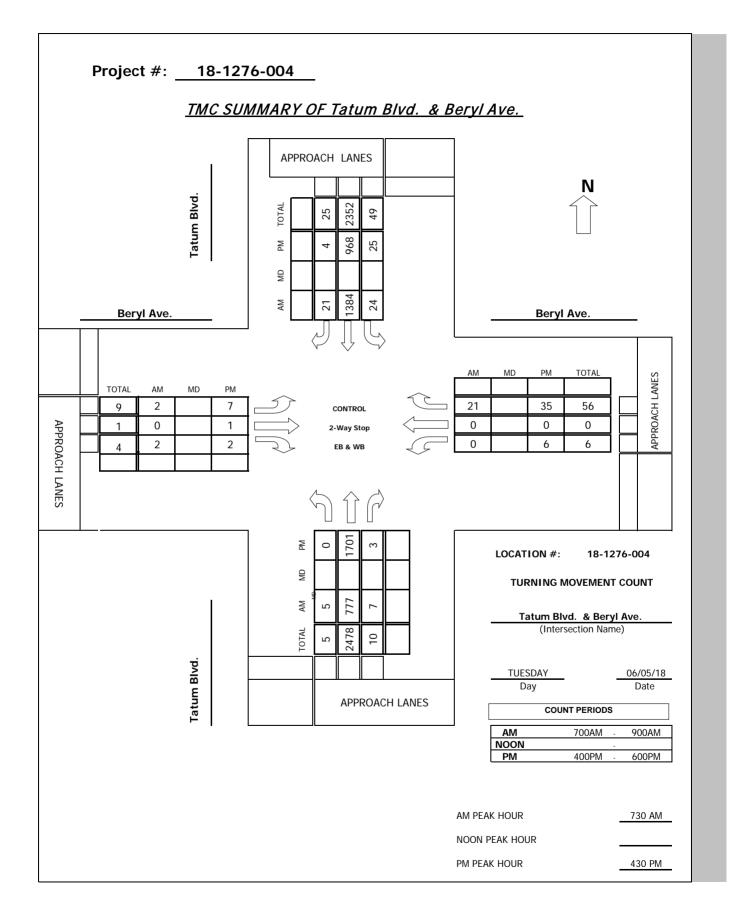
PM Peak Hr Begins at: 445 PM

PEAK

 Volumes
 48
 1719
 7
 2
 865
 129
 21
 0
 110
 1
 0
 55
 2957

 Approach %
 2.71
 96.90
 0.39
 0.20
 86.85
 12.95
 16.03
 0.00
 83.97
 1.79
 0.00
 98.21

PEAK HR.


FACTOR: 0.880 0.922 0.885 0.667 0.912

CONTROL: 2-Way Stop (EB-WB)

COMMENT 1: 0

GPS: 33.581381, -111.977890

N-S STREET: Tatum Blvd. DATE: 06/05/18 LOCATION: Phoenix

E-W STREET: Beryl Ave.

DAY: TUESDAY

PROJECT# 18-1276-004

	NC	ORTHBO	UND	SC	OUTHBOU	JND	E.	ASTBOL	JND	W	ESTBOL	JND	
LANES:	NL 0	NT 3	NR 0	SL 0	ST 3	SR 0	EL 0	ET 1	ER 0	WL 0	WT 1	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM													
7:00 AM 7:15 AM 7:30 AM	0 0 1	173 177 191	1 2 1	4 5 8	334 336 382	2 1 5	0 0 1	0 0 0	0 0 1	2 5 0	0 0 0	3 4 4	519 530 594
7:45 AM 8:00 AM 8:15 AM 8:30 AM	3 1 0 0	188 196 202 216	3 2 1 1	4 10 2 7	358 332 312 270	4 4 8 5	0 1 0 2	0 0 0	0 0 1 1	0 0 0 1	0 0 0	4 5 8 6	564 551 534 509
8:45 AM 9:00 AM 9:15 AM	0	208	1	9	258	5	1	0	Ö	Ó	0	4	486
9:30 AM 9:45 AM 10:00 AM 10:15 AM													
10:30 AM 10:45 AM 11:00 AM 11:15 AM 11:30 AM 11:45 AM													

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	1
Volumes	5	1551	12	49	2582	34	5	0	3	8	0	38	4287	l
Approach %	0.32	98.92	0.77	1.84	96.89	1.28	62.50	0.00	37.50	17.39	0.00	82.61		l
App/Depart	1568	/	1594	2665	/	2593	8	/	61	46	/	39		l

AM Peak Hr Begins at: 730 AM

PEAK

Volumes 777 24 1384 21 2 2243 Approach % 0.63 98.48

PEAK HR.

0.972 0.944 FACTOR: 0.904 0.500 0.656

CONTROL:

COMMENT 1:

2-Way Stop (EB & WB)

GPS: 33.580026, -111.977876

Intersection Turning Movement

N-S STREET: Tatum Blvd. DATE: 06/05/18 LOCATION: Phoenix

E-W STREET: Beryl Ave. DAY: TUESDAY PROJECT# 18-1276-004

	N	ORTHBO	UND	SC	OUTHBOU	JND	E.	ASTBOL	JND	W	'ESTBOL	JND	
LANES:	NL 0	NT 3	NR 0	SL 0	ST 3	SR 0	EL 0	ET 1	ER 0	WL 0	WT 1	WR 0	TOTAL
1:00 PM													
1:15 PM													
1:30 PM													
1:45 PM													
2:00 PM													
2:15 PM													
2:30 PM													
2:45 PM													
3:00 PM													
3:15 PM													
3:30 PM													
3:45 PM													
4:00 PM	0	368	0	7	248	1	2	0	0	0	0	3	629
4:15 PM	0	378	1	6	229	1	2	0	1	3	0	13	634
4:30 PM	0	403	2	8	241	1	1	0	0	2	0	10	668
4:45 PM	0	388	0	5	254	2	4	0	1	1	0	8	663
5:00 PM	0	479	1	10	251	0	1	1	0	1	0	9	753
5:15 PM	0	431	0	2	222	1	1	0	1	2	0	8	668
5:30 PM	0	347	0	3	216	0	0	0	1	2	0	4	573
5:45 PM	0	264	0	3	192	0	3	0	0	0	0	3	465
6:00 PM													
6:15 PM													
6:30 PM													
6:45 PM													
OTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
olumes	0	3058	4	44	1853	6	14	1	4	11	0	58	5053

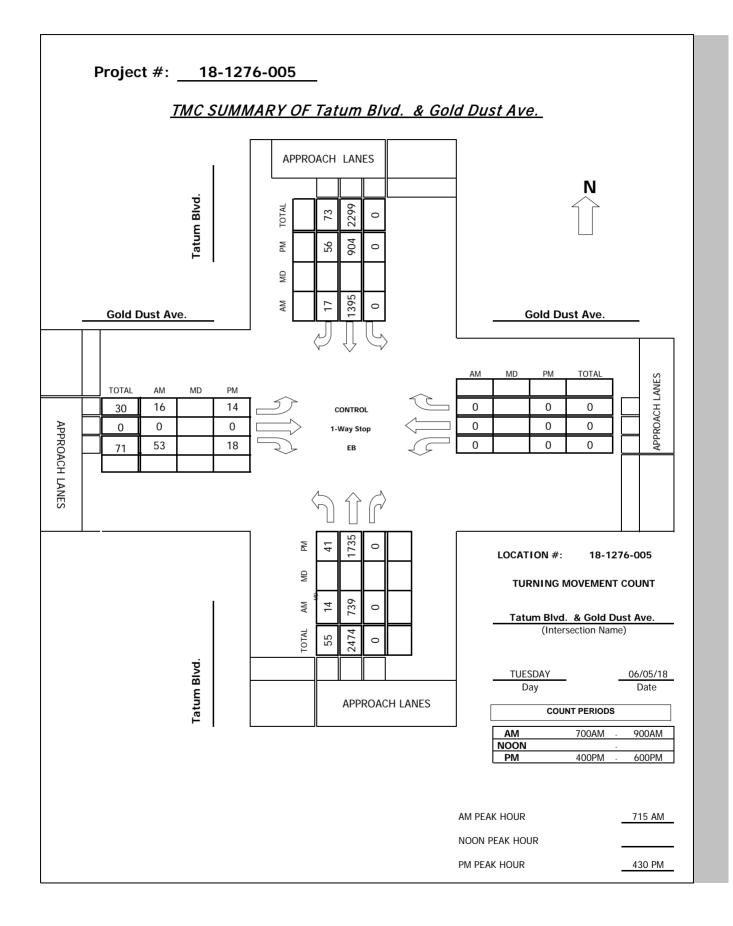
TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	0	3058	4	44	1853	6	14	1	4	11	0	58	5053
Approach %	0.00	99.87	0.13	2.31	97.37	0.32	73.68	5.26	21.05	15.94	0.00	84.06	
App/Depart	3062	/	3130	1903	/	1868	19	/	49	69	/	6	

PM Peak Hr Begins at: 430 PM

PEAK

Volumes 0 1701 3 25 968 4 7 1 2 6 0 35 2752 Approach % 0.00 99.82 0.18 2.51 97.09 0.40 70.00 10.00 20.00 14.63 0.00 85.37

PEAK HR.


FACTOR: 0.888 0.955 0.500 0.854 0.914

CONTROL: 2-Way Stop (EB & WB)

COMMENT 1: 0

GPS: 33.580026, -111.977876

N-S STREET: Tatum Blvd.

DATE: 06/05/18

LOCATION: Phoenix

E-W STREET: Gold Dust Ave.

DAY: TUESDAY

PROJECT# 18-1276-005

	NC	ORTHBO	UND	SC	OUTHBO	JND	E	ASTBOL	JND	W	'ESTBOL	JND	
LANES:	NL O	NT 3	NR 0	SL 0	ST 2	SR 1	EL 0	ET 1	ER 0	WL 0	WT 0	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM													
7:00 AM 7:15 AM 7:30 AM	2 4 4	169 171 189	0 0 0	0 0 0	327 336 378	9 2 5	3 5 4	0 0 0	14 12 15	0 0 0	0 0 0	0 0 0	524 530 595
7:45 AM 8:00 AM 8:15 AM	2 4 4	188 191 198	0 0 0	0 0 0	354 327 306	4 6 4	4 3 6	0 0 0	15 11 7	0 0 0	0 0 0	0 0 0	567 542 525
8:30 AM 8:45 AM 9:00 AM	7 5	212 198	0	0	253 238	12 9	7 8	0	12 4	0	0	0	503 462
9:15 AM 9:30 AM 9:45 AM 10:00 AM													
10:15 AM 10:30 AM 10:45 AM 11:00 AM 11:15 AM													
11:30 AM 11:45 AM													

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	32	1516	0	0	2519	51	40	0	90	0	0	0	4248
Approach %	2.07	97.93	0.00	0.00	98.02	1.98	30.77	0.00	69.23	####	####	####	
App/Depart	1548	/	1556	2570	/	2609	130	/	0	0	/	83	

AM Peak Hr Begins at: 715 AM

PEAK

Volumes 14 739 0 0 1395 17 16 0 2234 1.86 98.14 0.00 0.00 98.80 1.20 23.19 0.00 76.81 #### #### #### Approach %

PEAK HR.

0.939 FACTOR: 0.965 0.922 0.908 0.000

CONTROL:

1-Way Stop (EB)

COMMENT 1: GPS:

33.579076, -111.977859

Intersection Turning Movement

N-S STREET: Tatum Blvd. DATE: 06/05/18 LOCATION: Phoenix

0

E-W STREET: Gold Dust Ave. DAY: TUESDAY PROJECT# 18-1276-005

	NC	ORTHBO	UND	SC	DUTHBO	JND	Е	ASTBOL	JND	W	ESTBOL	JND	
LANES:	NL 0	NT 3	NR 0	SL 0	ST 2	SR 1	EL 0	ET 1	ER 0	WL 0	WT 0	WR 0	TOTAL
1:00 PM													
1:15 PM													
1:30 PM													
1:45 PM													
2:00 PM													
2:15 PM													
2:30 PM													
2:45 PM													
3:00 PM													
3:15 PM													
3:30 PM													
3:45 PM													
4:00 PM	8	380	0	0	235	4	1	0	0	0	0	0	628
4:15 PM	6	388	0	0	220	18	1	0	2	0	0	0	635
4:30 PM	5	407	0	0	221	13	2	0	4	0	0	0	652
4:45 PM	8	380	0	0	244	10	3	0	3	0	0	0	648
5:00 PM	14	494	0	0	238	17	4	0	5	0	0	0	772
5:15 PM	14	454	0	0	201	16	5	0	6	0	0	0	696
5:30 PM	7	357	0	0	205	12	1	0	1	0	0	0	583
5:45 PM	7	270	0	0	185	11	1	0	1	0	0	0	475
6:00 PM													
6:15 PM													
6:30 PM													
6:45 PM													
OTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
olumes	69	3130	Ω	Ο	1749	101	18	Λ	22	Λ	n	Λ	5089

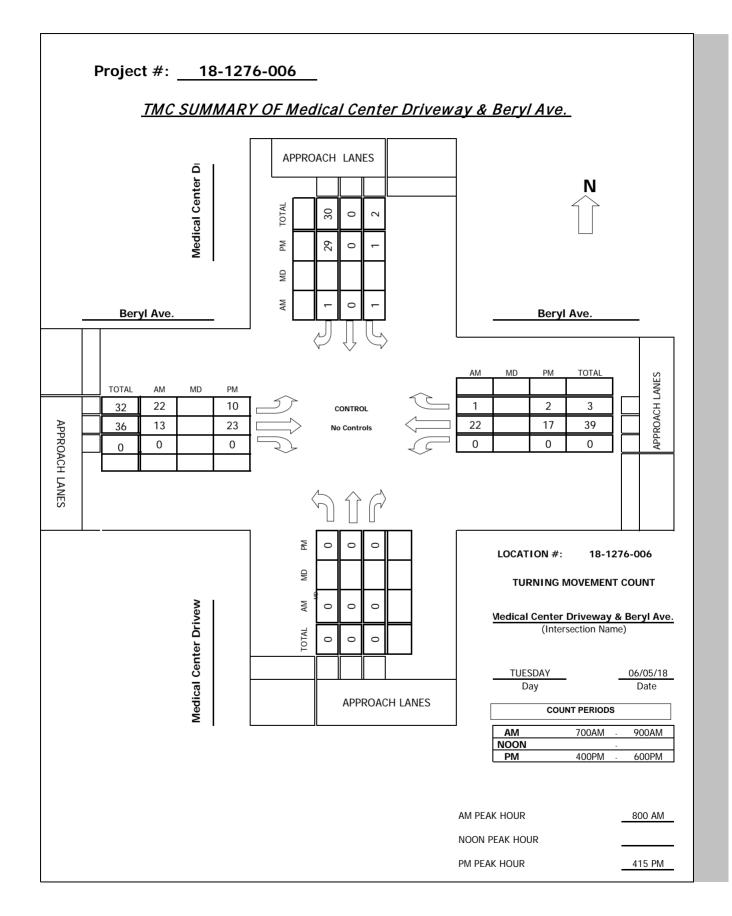
TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	69	3130	0	0	1749	101	18	0	22	0	0	0	5089
Approach %	2.16	97.84	0.00	0.00	94.54	5.46	45.00	0.00	55.00	####	####	####	
App/Depart	3199	/	3148	1850	/	1771	40	/	0	0	/	170	

PM Peak Hr Begins at: 430 PM

PEAK

Volumes 41 1735 0 0 904 56 14 0 18 0 0 0 2768 Approach % 2.31 97.69 0.00 0.00 94.17 5.83 43.75 0.00 56.25 #### #### ####

PEAK HR.


FACTOR: 0.874 0.941 0.727 0.000 0.896

CONTROL: 1-Way Stop (EB)

COMMENT 1: 0

GPS: 33.579076, -111.977859

N-S STREET: Medical Center Driveway DATE: 06/05/18 LOCATION: Phoenix

E-W STREET: Beryl Ave. DAY: TUESDAY PROJECT# 18-1276-006

	NC	NORTHBOUND			UTHBO	UND	E	ASTBOL	JND	W	'ESTBOL	JND	
LANES:	NL 0	NT 0	NR 0	SL 0	ST 1	SR 0	EL 0	ET 1	ER 0	WL 0	WT 1	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM													_
7:00 AM 7:15 AM 7:30 AM 7:45 AM	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 1 0 1	1 5 4 3	3 3 4 4	0 0 0	0 0 0	5 7 5 3	0 0 1 0	9 16 14 11
8:00 AM 8:15 AM 8:30 AM	0 0 0	0 0 0	0 0 0	0 0 0 1	0 0 0	0 0 0	8 2 6	4 2 3	0 0 0	0 0 0	5 8 6	1 0 0	18 12 16
8:45 AM 9:00 AM 9:15 AM 9:30 AM	0	0	0	0	0	1	6	4	0	0	3	0	14
9:45 AM 10:00 AM 10:15 AM 10:30 AM													
10:45 AM 11:00 AM 11:15 AM 11:30 AM 11:45 AM													

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	0	0	0	1	0	3	35	27	0	0	42	2	110
Approach %	####	####	####	25.00	0.00	75.00	56.45	43.55	0.00	0.00	95.45	4.55	
App/Depart	0	/	37	4	/	0	62	/	28	44	/	45	

AM Peak Hr Begins at: 800 AM

PEAK

Volumes 0 0 0 1 0 1 22 13 0 0 22 1 60 Approach % #### #### ### 50.00 0.00 50.00 62.86 37.14 0.00 0.00 95.65 4.35

PEAK HR.

FACTOR: 0.000 0.500 0.729 0.719 0.833

CONTROL: No Controls

COMMENT 1:

GPS: 33.580032, -111.977364

Intersection Turning Movement

N-S STREET: Medical Center Driveway

DATE: 06/05/18

LOCATION: Phoenix

E-W STREET: Beryl Ave.

DAY: TUESDAY

PROJECT# 18-1276-006

	NC	RTHBO	UND	SOI	JTHBO	JND	E/	ASTBOU	ND	W	ESTBOU	IND	
LANES:	NL 0	NT 0	NR 0	SL 0	ST 1	SR 0	EL 0	ET 1	ER 0	WL 0	WT 1	WR 0	TOTAL
1:00 PM													
1:15 PM													
1:30 PM													
1:45 PM													
2:00 PM													
2:15 PM													
2:30 PM													
2:45 PM													
3:00 PM													
3:15 PM													
3:30 PM													
3:45 PM													
4:00 PM	0	0	0	0	0	1	2	5	0	0	3	0	11
4:15 PM	0	0	0	0	0	9	1	6	0	0	5	1	22
4:30 PM	0	0	0	0	0	7	3	6	0	0	6	1	23
4:45 PM	0	0	0	1	0	7	2	4	0	0	2	0	16
5:00 PM	0	0	0	0	0	6	4	7	0	0	4	0	21
5:15 PM	0	0	0	0	0	5	0	4	0	0	5	1	15
5:30 PM	0	0	0	0	0	2	1	2	0	0	4	0	9
5:45 PM	0	0	0	0	0	0	0	3	0	0	3	0	6
6:00 PM													
6:15 PM													
6:30 PM													
6:45 PM													
TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	0	0	0	1	0	37	13	37	0	0	32	3	123
Approach %	####	####	####	2.63	0.00	97.37	26.00	74.00	0.00	0.00	91.43	8.57	

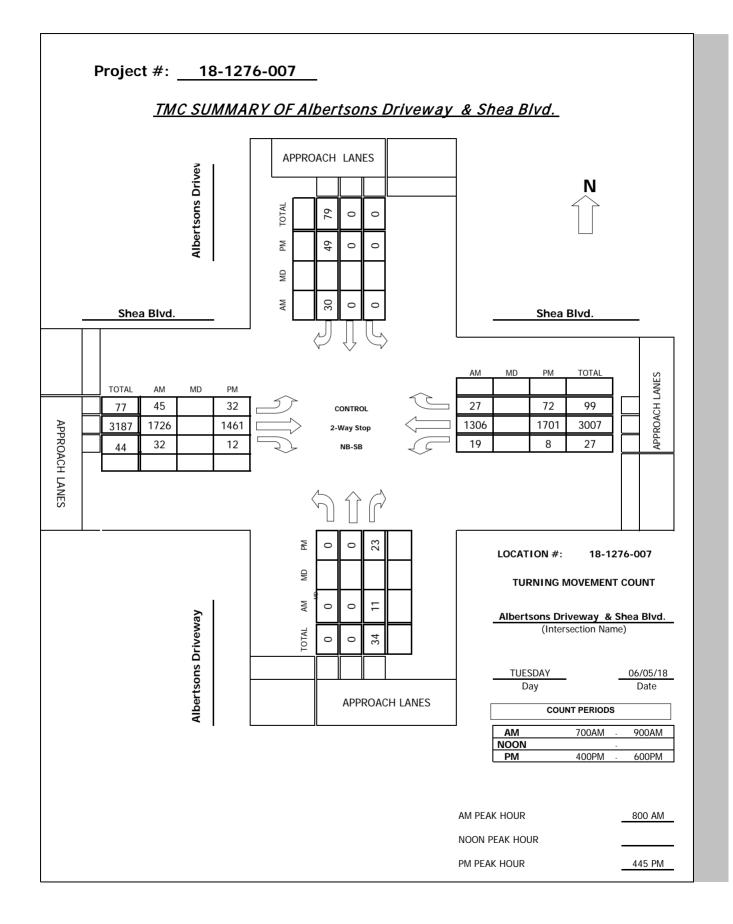
TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	0	0	0	1	0	37	13	37	0	0	32	3	123
Approach %	####	####	####	2.63	0.00	97.37	26.00	74.00	0.00	0.00	91.43	8.57	
App/Depart	0	/	16	38	/	0	50	/	38	35	/	69	

PM Peak Hr Begins at:

PEAK

29 10 23 Volumes #### #### #### 3.33 0.00 96.67 30.30 69.70 0.00 0.00 89.47 10.53

PEAK HR.


0.000 0.833 0.750 0.679 0.891 FACTOR:

CONTROL: No Controls

COMMENT 1: 0

GPS: 33.580032, -111.977364

N-S STREET: Albertsons Driveway **Medical Center** DATE: 06/05/18

LOCATION: Phoenix

E-W STREET: Shea Blvd.

DAY: TUESDAY

PROJECT# 18-1276-007

	NC	NORTHBOUND			SOUTHBOUND			ASTBOU	ND	W	JND		
LANES:	NL O	NT 0	NR 1	SL 0	ST 0	SR 1	EL 1	ET 3	ER 0	WL 0	WT 3	WR 1	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM			_						_				
7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM	0 0 0 0	0 0 0 0	2 0 3 1 2	0 0 0 0	0 0 0 0	6 2 4 7 7	12 11 15 8 6	328 402 368 431 435	3 7 4 10 8	1 2 11 6 4	244 270 252 286 322	4 6 5 2 5	600 700 662 751 789
8:15 AM 8:30 AM 8:45 AM 9:00 AM	0 0 0	0 0 0	2 1 6	0 0 0	0 0 0	6 5 12	15 11 13	410 477 404	8 6 10	4 3 8	321 343 320	6 8 8	772 854 781
9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:00 AM 11:15 AM 11:30 AM 11:30 AM													

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	0	0	17	0	0	49	91	3255	56	39	2358	44	5909
Approach %	0.00	0.00	100.00	0.00	0.00	100.00	2.67	95.68	1.65	1.60	96.60	1.80	
App/Depart	17	/	135	49	/	95	3402	/	3272	2441	/	2407	

AM Peak Hr Begins at: 800 AM

PEAK

Volumes 11 0 0 30 45 1726 1306 27 3196 0.00 0.00 100.00 0.00 0.00 100.00 2.50 95.73 1.77 1.41 96.60 Approach %

PEAK HR.

0.458 0.625 0.936 FACTOR: 0.912 0.955

CONTROL:

2-Way Stop (NB-SB)

COMMENT 1: GPS:

33.582676, -111.974761

Intersection Turning Movement

N-S STREET: Albertsons Driveway
Medical Center

DATE: 06/05/18

LOCATION: Phoenix

E-W STREET: Shea Blvd.

DAY: TUESDAY

PROJECT# 18-1276-007

	NO	RTHBO	UND	SOL	JTHBO	UND	E/	ASTBOU	ND	W	ESTBOU	ND	
LANES:	NL 0	NT 0	NR 1	SL 0	ST 0	SR 1	EL 1	ET 3	ER 0	WL 0	WT 3	WR 1	TOTAL
1:00 PM													
1:15 PM													
1:30 PM													
1:45 PM													
2:00 PM													
2:15 PM													
2:30 PM													
2:45 PM													
3:00 PM													
3:15 PM													
3:30 PM													
3:45 PM	0	0	10	0	0	1/	10	220	4	4	405	15	000
4:00 PM	0	0	10	0	0	16	12	320	1	1	425	15	800
4:15 PM 4:30 PM	0	0	4	0	0	13 12	22 9	366	4	2	401 413	20 11	832 802
4:30 PM 4:45 PM	0	0	5 5	0	0 0	12	9 11	347 352	2	3	413	20	802 829
4.45 PM 5:00 PM	0 0	0	12	0	0	10	9	375	3	ა 1	423 428	20 15	853
5:00 PM	0	0	3	0	0	10	4	403	3	2	427	20	872
5:30 PM	0	0	3	0	0	17	8	331	3	2	427	17	804
5:45 PM	0	0	2	0	0	11	11	354	1	1	394	18	792
6:00 PM	U	O	2	U	U			334			374	10	1 12
6:15 PM													
6:30 PM													
6:45 PM													
0.101													
OTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
olumes	0	0	44	0	0	101	86	2848	20	15	3334	136	6584
pproach %	0.00	0.00	100.00	0.00	0.00	100.00	2.91	96.41	0.68	0.43	95.67	3.90	
pp/Depart	44	/	222	101	/	35	2954	/	2892	3485	/	3435	

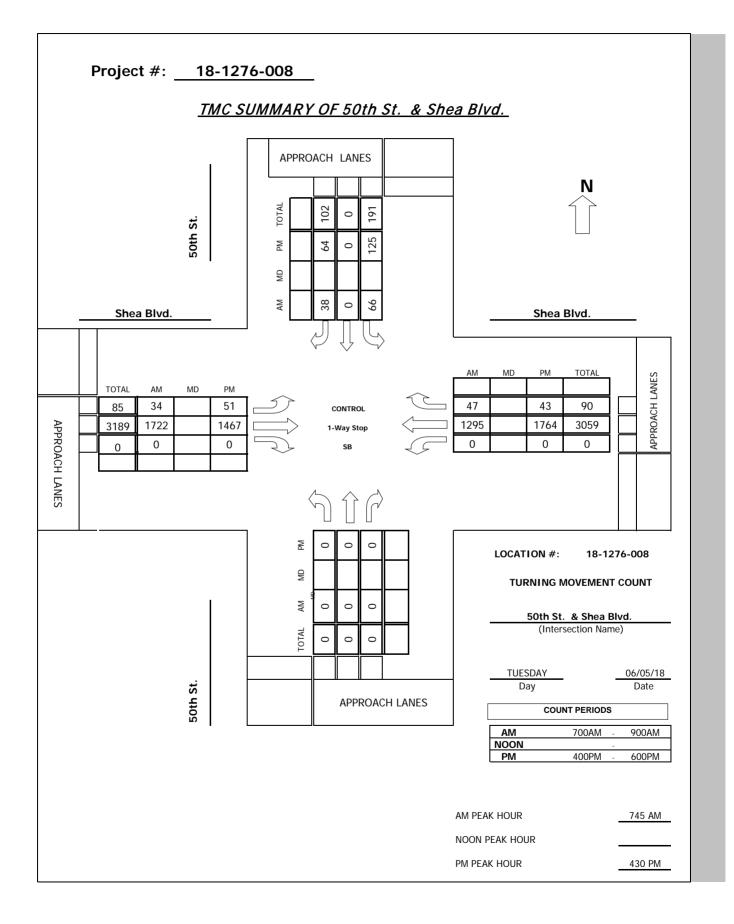
PM Peak Hr Begins at: 445 PM

PEAK

Volumes 0 0 23 0 0 49 32 1461 12 8 1701 72 3358 Approach % 0.00 0.00 100.00 0.00 100.00 2.13 97.08 0.80 0.45 95.51 4.04

PEAK HR.

FACTOR: 0.479 0.721 0.918 0.992 0.963


CONTROL: 2-Way Stop (NB-SB)

COMMENT 1: 0

GPS: 33.582676, -111.974761

Intersection Turning Movement Prepared by:

Intersection Turning Movement Prepared by:

N-S STREET: 50th St. DATE: 06/05/18 LOCATION: Phoenix

E-W STREET: Shea Blvd. DAY: TUESDAY PROJECT# 18-1276-008

	NC	ORTHBO	UND	SC	UTHBO	UND	E	ASTBOU	ND	W	'ESTBOL	JND	
LANES:	NL O	NT 0	NR 0	SL 1	ST 0	SR 1	EL 1	ET 3	ER 0	WL 0	WT 2	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM													
7:00 AM 7:15 AM 7:30 AM	0 0 0	0 0 0	0 0 0	14 10 13	0 0 0	6 10 9	4 5 6	345 426 445	0 0 0	0 0 0	268 283 321	3 3 12	640 737 806
7:45 AM 8:00 AM	0	0	0	11 17	0 0	10 8	6 16	434 416	0	0	278 325	13 7	752 789
8:15 AM 8:30 AM 8:45 AM	0 0 0	0 0 0	0 0 0	17 21 32	0 0 0	11 9 11	2 10 5	448 424 366	0 0 0	0 0 0	317 375 313	11 16 18	806 855 745
9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM	·	·		<u> </u>									,
10:15 AM 10:30 AM 10:45 AM 11:00 AM													
11:15 AM 11:30 AM 11:45 AM													

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	0	0	0	135	0	74	54	3304	0	0	2480	83	6130
Approach %	####	####	####	64.59	0.00	35.41	1.61	98.39	0.00	0.00	96.76	3.24	
App/Depart	0	/	137	209	/	0	3358	/	3439	2563	/	2554	

AM Peak Hr Begins at: 745 AM

PEAK

Volumes 0 0 0 66 0 38 34 1722 0 0 1295 47 3202 Approach % #### #### #### 63.46 0.00 36.54 1.94 98.06 0.00 0.00 96.50 3.50

PEAK HR.

FACTOR: 0.000 0.867 0.976 0.858 0.936

CONTROL:

1-Way Stop (SB)

COMMENT 1: GPS:

33.582714, -111.973552

Intersection Turning Movement

N-S STREET: 50th St. DATE: 06/05/18 LOCATION: Phoenix

0

E-W STREET: Shea Blvd. DAY: TUESDAY PROJECT# 18-1276-008

	NC	RTHBO	UND	SC	UTHBO	UND	E	ASTBOL	IND	W	JND		
LANES:	NL O	NT 0	NR 0	SL 1	ST 0	SR 1	EL 1	ET 3	ER 0	WL 0	WT 2	WR 0	TOTAL
1:00 PM													
1:15 PM													
1:30 PM													
1:45 PM													
2:00 PM													
2:15 PM													
2:30 PM													
2:45 PM													
3:00 PM													
3:15 PM													
3:30 PM													
3:45 PM													
4:00 PM	0	0	0	25	0	11	7	301	0	0	424	12	780
4:15 PM	0	0	0	28	0	7	1	347	0	0	409	9	801
4:30 PM	0	0	0	24	0	16	19	353	0	0	443	8	863
4:45 PM	0	0	0	46	0	19	7	355	0	0	423	11	861
5:00 PM	0	0	0	25	0	11	13	398	0	0	457	8	912
5:15 PM	0	0	0	30	0	18	12	361	0	0	441	16	878
5:30 PM	0	0	0	40	0	9	17	339	0	0	419	15	839
5:45 PM	0	0	0	24	0	14	8	310	0	0	332	10	698
6:00 PM													
6:15 PM													
6:30 PM													
6:45 PM													
TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	0	0	0	242	0	105	84	2764	0	0	3348	89	6632
Approach %	####	####	####	69.74	0.00	30.26	2.95	97.05	0.00	0.00	97.41	2.59	
App/Depart	0	/	173	347	/	0	2848	/	3006	3437	/	3453	

PM Peak Hr Begins at: 430 PM

Volumes 0 0 0 125 0 64 51 1467 0 0 1764 43 3514 Approach % ########### 66.14 0.00 33.86 3.36 96.64 0.00 0.00 97.62 2.38

PEAK HR.

FACTOR: 0.000 0.727 0.923 0.972 0.963

CONTROL: 1-Way Stop (SB)

COMMENT 1: 0

GPS: 33.582714, -111.973552

APPENDIX C

EXISTING PEAK HOUR CAPACITY ANALYSIS

Mountain View Medical Center Existing AM

1: Tatum Blvd & Desert Cove Ave Timing Report, Sorted By Phase

⊸t	A		+
	-	* **	#
2	4	6	8
NBTL	EBTL	SBTL	WBTL
None	C-Max	None	C-Max
66	36	66	36
64.7%	35.3%	64.7%	35.3%
25.3	35	25.3	35
4.3	3	4.3	3
1	3	1	3
15	4	15	4
3	3	3	3
3	3	3	3
0	0	0	0
0	0	0	0
8	7	8	7
12	22	12	22
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes
55	19	55	19
19	55	19	55
13.7	49	13.7	49
1.7	27	1.7	27
36	0	36	0
96.7	30	96.7	30
84.7	8	84.7	8
		102	
Actu	ated-Coo	rdinated	
		65	
	NBTL None 66 64.7% 25.3 1 15 3 3 0 0 8 8 12 Yes 55 19 13.7 1.7 36 96.7 84.7	NBTL EBTL None C-Max 66 36 64.7% 35.3% 25.3 35 4.3 3 1 3 15 4 3 3 3 0 0 0 0 0 0 8 7 12 22 Yes Yes Yes Yes Yes Yes 13.7 49 1.7 27 36 0 96.7 30 84.7 8	None C-Max None 66 36 66 64.7% 35.3% 64.7% 25.3 35 25.3 4.3 3 4.3 1 3 1 15 4 15 3 3 3 0 0 0 0 0 0 8 7 8 12 22 12 Yes Yes Yes Yes Yes Yes 19 55 19 13.7 49 13.7 1.7 27 1.7 36 0 36 96.7 30 96.7 84.7 8 84.7

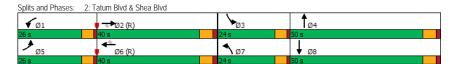
Splits and Phases: 1: Tatum Blvd & Desert Cove Ave

 07/03/2018
 Synchro 10 Report

 Civtech
 Page 1

Mountain View Medical Center Existing AM

1: Tatum Blvd & Desert Cove Ave HCM 6th Signalized Intersection Summary


	۶	→	\rightarrow	•	←	•	1	†	1	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ተተተ	7	ሻ	↑ ↑↑	
Traffic Volume (veh/h)	8	0	4	18	0	44	27	742	33	77	984	9
Future Volume (veh/h)	8	0	4	18	0	44	27	742	33	77	984	9
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	9	0	4	20	0	49	30	824	37	86	1093	10
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	573	11	233	259	23	578	169	1844	572	223	1884	17
Arrive On Green	0.53	0.00	0.53	0.53	0.00	0.53	0.36	0.36	0.36	0.36	0.36	0.36
Sat Flow, veh/h	972	20	441	403	44	1095	511	5106	1585	642	5218	48
Grp Volume(v), veh/h	13	0	0	69	0	0	30	824	37	86	713	390
Grp Sat Flow(s),veh/h/ln	1434	0	0	1542	0	0	511	1702	1585	642	1702	1862
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	0.0	5.1	12.5	1.6	12.0	17.3	17.3
Cycle Q Clear(g_c), s	0.4	0.0	0.0	2.1	0.0	0.0	22.4	12.5	1.6	24.6	17.3	17.3
Prop In Lane	0.69		0.31	0.29		0.71	1.00		1.00	1.00		0.03
Lane Grp Cap(c), veh/h	817	0	0	860	0	0	169	1844	572	223	1229	672
V/C Ratio(X)	0.02	0.00	0.00	0.08	0.00	0.00	0.18	0.45	0.06	0.38	0.58	0.58
Avail Cap(c_a), veh/h	817	0	0	860	0	0	288	3039	943	374	2026	1108
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	0.85	0.85	0.85	1.00	1.00	1.00
Uniform Delay (d), s/veh	11.4	0.0	0.0	11.8	0.0	0.0	35.4	24.8	21.3	34.2	26.3	26.3
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.2	0.0	0.0	0.4	0.1	0.0	1.1	0.4	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.3	0.0	0.0	1.4	0.0	0.0	1.2	8.4	1.0	3.5	11.3	12.2
Unsig. Movement Delay, s/veh		0.0	0.0	10.0	0.0	0.0	25.0	05.6	01.4	25.0	0/.0	07.1
LnGrp Delay(d),s/veh	11.5	0.0	0.0	12.0	0.0	0.0	35.8	25.0	21.4	35.3	26.8	27.1
LnGrp LOS	В	A	A	В	Α (0)	A	D	C	С	D	C	С
Approach Vol, veh/h		13			69			891			1189	
Approach Delay, s/veh		11.5			12.0			25.2			27.5	
Approach LOS		В			В			С			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		42.1		59.9		42.1		59.9				
Change Period (Y+Rc), s		5.3		6.0		5.3		6.0				
Max Green Setting (Gmax), s		60.7		30.0		60.7		30.0				
Max Q Clear Time (g_c+I1), s		24.4		2.4		26.6		4.1				
Green Ext Time (p_c), s		7.5		0.0		10.3		0.3				
Intersection Summary												
HCM 6th Ctrl Delay			26.0									
HCM 6th LOS			С									

Mountain View Medical Center Existing AM

2: Tatum Blvd & Shea Blvd Timing Report, Sorted By Phase

	•	*	-	Ť	•	4-	1	¥	
Phase Number	1	2	3	4	5	6	7	8	
Movement	WBL	EBT	SBL	NBT	EBL	WBT	NBL	SBT	Т
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	26	40	24	50	26	40	24	50	
Maximum Split (%)	18.6%	28.6%	17.1%	35.7%	18.6%	28.6%	17.1%	35.7%	
Minimum Split (s)	10	36.9	20	40	10	36.9	20	40	
Yellow Time (s)	4	4.3	4	4.3	4	4.3	4	4.3	
All-Red Time (s)	1	1.6	1	1.7	1	1.6	1	1.7	
Minimum Initial (s)	5	15	15	15	5	15	15	15	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		8		8		8		8	
Flash Dont Walk (s)		23		26		23		26	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	114	0	40	64	114	0	40	64	
End Time (s)	0	40	64	114	0	40	64	114	
Yield/Force Off (s)	135	34.1	59	108	135	34.1	59	108	
Yield/Force Off 170(s)	135	11.1	59	82	135	11.1	59	82	
Local Start Time (s)	114	0	40	64	114	0	40	64	
Local Yield (s)	135	34.1	59	108	135	34.1	59	108	
Local Yield 170(s)	135	11.1	59	82	135	11.1	59	82	
Intersection Summary									

Control Type Actuated-Coordinated
Natural Cycle 110
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green, Master Intersection

Synchro 10 Report Page 3 07/03/2018 Civtech

Mountain View Medical Center Existing AM

2: Tatum Blvd & Shea Blvd HCM 6th Signalized Intersection Summary

270001197111	_					_						
	•	-	•	•	•	•	1	†		-	¥	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^	7	77	ተተተ	7	1,1	↑ ↑₽		1,1	ተተp	
Traffic Volume (veh/h)	207	1390	432	292	873	165	253	374	200	200	669	104
Future Volume (veh/h)	207	1390	432	292	873	165	253	374	200	200	669	104
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	230	1544	480	324	970	183	281	416	222	222	743	116
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	288	2103	653	382	2242	696	370	728	339	370	954	148
Arrive On Green	0.08	0.41	0.41	0.11	0.44	0.44	0.11	0.21	0.21	0.11	0.21	0.21
Sat Flow, veh/h	3456	5106	1585	3456	5106	1585	3456	3404	1585	3456	4460	690
Grp Volume(v), veh/h	230	1544	480	324	970	183	281	416	222	222	566	293
Grp Sat Flow(s),veh/h/ln	1728	1702	1585	1728	1702	1585	1728	1702	1585	1728	1702	1746
Q Serve(g_s), s	9.1	35.7	35.8	12.9	18.4	10.3	11.1	15.3	17.9	8.6	21.9	22.2
Cycle Q Clear(g_c), s	9.1	35.7	35.8	12.9	18.4	10.3	11.1	15.3	17.9	8.6	21.9	22.2
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.40
Lane Grp Cap(c), veh/h	288	2103	653	382	2242	696	370	728	339	370	728	374
V/C Ratio(X)	0.80	0.73	0.74	0.85	0.43	0.26	0.76	0.57	0.65	0.60	0.78	0.79
Avail Cap(c_a), veh/h	518	2103	653	518	2242	696	469	1070	498	469	1070	549
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.73	0.73	0.73
Uniform Delay (d), s/veh	63.0	34.7	34.7	61.1	27.2	24.9	60.7	49.3	50.3	59.6	51.9	52.0
Incr Delay (d2), s/veh	5.1	2.3	7.2	9.5	0.6	0.9	5.4	0.7	2.1	1.1	1.6	3.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	7.6	21.6	21.4	10.2	12.2	7.4	8.9	10.9	11.8	6.6	13.9	14.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	68.1	37.0	42.0	70.6	27.8	25.8	66.2	50.0	52.4	60.8	53.5	55.3
LnGrp LOS	E	D	D	E	С	С	E	D	D	E	D	E
Approach Vol, veh/h		2254			1477			919			1081	
Approach Delay, s/veh		41.2			36.9			55.5			55.5	
Approach LOS		D			D			Е			Е	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	20.5	63.6	20.0	36.0	16.7	67.4	20.0	36.0				
Change Period (Y+Rc), s	5.0	* 5.9	5.0	* 6	5.0	* 5.9	5.0	* 6				
Max Green Setting (Gmax), s	21.0	* 34	19.0	* 44	21.0	* 34	19.0	* 44				
Max Q Clear Time (g_c+l1), s	14.9	37.8	10.6	19.9	11.1	20.4	13.1	24.2				
Green Ext Time (p_c), s	0.6	0.0	0.5	4.5	0.5	6.3	0.5	5.7				
Intersection Summary												
HCM 6th Ctrl Delay			45.1									
HCM 6th LOS			D									

07/03/2018 Synchro 10 Report Civtech Page 4

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

0.4

Intersection Int Delay, s/veh

ntersection													
nt Delay, s/veh	0.9												
Novement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations	LDL	4	LDIN	WDL	₩	WDIX	NDL T	**	NDIX	JUL	***	3DK	
raffic Vol, veh/h	24	0	62	2	0	11	39	755	17	1	1509	83	
uture Vol, veh/h	24	0	62	2	0	11	39	755	17	1	1509	83	
onflicting Peds, #/hr	0	0	02	0	0	0	0	0	0	0	0	0.0	
ign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
T Channelized	Stop -	Stop	None	Jiup -	Stop -	None	1166	-	None	1166	1100	None	
torage Length			NOTIC -			- INOTIC	105		INOTIC -			150	
eh in Median Storage	# -	0			0		-	0			0	-	
rade, %	-	0			0	-		0			0	-	
eak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
eavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
vmt Flow	27	0	69	2	0	12	43	839	19	1	1677	92	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-		_	_								
-:/h 4:	Ai			Ai1		,	14-:1			4-:2			
lajor/Minor Monflicting Flow All	Minor2	2422		/linor1 1608	2706	429	Major1 1769	0	0	Major2 858	0	0	
	2101 1679	2623 1679	839	935	935	429	1769	U	U	858	0	U	
Stage 1	422	944		673	1771		-	-			-	-	
Stage 2 ritical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-		5.34		-	
,	7.34	5.54	7.14	7.34	5.54	7.14	5.54			5.54		-	
ritical Hdwy Stg 1 ritical Hdwy Stg 2	6.74	5.54	-	6.74	5.54								
ollow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12			3.12			
ot Cap-1 Maneuver	*255	*77	*571	*586	64	491	636	-		458	-		
Stage 1	*586	*557	3/1	*221	342	471	030			430			
Stage 2	*531	*339	-	*586	496							_	
atoon blocked. %	1	1	1	1	1		1						
lov Cap-1 Maneuver	*180	*49	*571	*373	41	491	636			458		-	
lov Cap-2 Maneuver	*180	*49	-	*373	41		-			-		-	
Stage 1	*546	*385		*206	319					-		-	
Stage 2	*483	*316		*356	342							-	
g													
oproach	EB			WB			NB			SB			
CM Control Delay, s	18.8			12.9			0.5			<u> </u>			
CM LOS	10.0 C			12.9 B			0.5			U			
ICIVI LOS	C			ь									
in 1 /h 4-i h 4		NDI	NDT	NDD	- DI 41	MDI 4	CDI	CDT	CDD				
linor Lane/Major Mvm	l	NBL	NBT	MRK	EBLn1V		SBL	SBT	SBR				
apacity (veh/h)		636	-	-	355	468	458	-	-				
CM Cantrol Dalay (a)		0.068	-	-	0.269	0.031	0.002	-					
CM Control Delay (s) CM Lane LOS		11.1 B	-	- 1	18.8 C	12.9 B	12.9 B	- 1	-				
		0.2	-	-	1.1	0.1	0	-					
HCM 95th %tile Q(veh)		0.2			1.1	U. I	U						
otes													
Volume exceeds cap	pacity	\$: De	elay exc	eeds 3	00s	+: Com	putation	Not D	efined	*: All	major v	olume i	in platoon

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4		- 1	↑ ↑			ተ ተጮ		
raffic Vol, veh/h	2	0	2	0	0	24	5	794	8	27	1414	21	
uture Vol, veh/h	2	0	2	0	0	24	5	794	8	27	1414	21	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	50	-	-	-	-	-	
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-		0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Vivmt Flow	2	0	2	0	0	27	6	882	9	30	1571	23	
Major/Minor 1	Minor2		N	/linor1		N	Najor1		A	Najor2			
Conflicting Flow All	2008	2546	797	1587	2553	446	1594	0	0	891	0	0	
				899	899	440	1094		U	891	U	U	
Stage 1	1643	1643 903	-	688	1654		-	-			-	-	
Stage 2	365		7 4 4						-		-	-	
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-	
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54		-	-	-	-	-	-	
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	- 0.40	-	-	- 0.40	-	-	
ollow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-	
Pot Cap-1 Maneuver	270	82	*590	*606	80	479	*742	-	-	442	-	-	
Stage 1	553	543	-	*234	356	-	-	-	-	-	-	-	
Stage 2	574	354	-	*606	534	-	-	-	-	-	-	-	
Platoon blocked, %	1	1	1	1	1	470	1	-	-	440	-	-	
Mov Cap-1 Maneuver	131	32	*590	*309	31	479	*742	-	-	442		-	
Nov Cap-2 Maneuver	131	32	-	*309	31	-	-	-	-	-	-	-	
Stage 1	549	213	-	*232	353	-	-	-	-	-	-	-	
Stage 2	538	351	-	*236	209	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	22.2			13			0.1			0.3			
HCM LOS	С			В									
Minor Lane/Major Mvm	ıt	NBL	NBT	NBR	EBLn1\	NRI n1	SBL	SBT	SBR				
Capacity (veh/h)		* 742	INDI	TTOIC	214	479	442	- 301	JUIN -				
HCM Lane V/C Ratio		0.007			0.021		0.068						
HCM Control Delay (s)		9.9			22.2	13	13.7	-					
CM Control Delay (3)		7. 7 A			22.2 C	В	13.7 B						
HCM 95th %tile Q(veh)	١	0			0.1	0.2	0.2	-	_				
		U			U. I	0.2	0.2	_					
Votes													
~: Volume exceeds cap	oacity	\$: De	lay exc	eeds 3	00s	+: Com	putation	Not D	efined	*: All	major v	olume i	in platoon

0.5 EBL 16	EBR	NBL					
¥	EBR	MRI					
		INDL	NBT	SBT	SBR		
16		ች	^ ^	44	7		
	54	14	755	1426	17		
16	54	14	755	1426	17		
0	0	0	0	0	0		
Stop	Stop	Free	Free	Free	Free		
-	None	-	None	-	None		
0	-	50	-		-		
e. # O	-	-	0	0	-		
0			0	0			
90	90	90	90	90	90		
2	2	2	2	2	2		
18	60	16	839	1584	19		
10	00	10	007	1001	.,		
Minor2	N	/lajor1	N	//ajor2			
1952	792	1603	0	-	0		
1584	-	-					
	-						
	3.32	2 22	-				
	-	- 7 12					
551							
EB		NB		SB			
14.1		0.2		0			
В							
nt	NBL	NBT	EBLn1	SBT	SBR		
	* 742	-	471	-	-		
	0.021		0.165				
	10		14.1				
	A		В				
)	0.1		0.6				
pacity	6. D	laa		20-	. C-	outstan Nat Dafin 1	*: All major volume in platoon
	0 0 90 90 2 18 18 1952 1584 368 6.29 5.84 1 1 *439 *634 EB 14.1 B	0 2, # 0 0 0 10	0 - 50 2, # 0	0	0 - 50 - 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 90 90 90 90 90 2 2 2 2 2 2 18 60 16 839 1584 Minor2 Major1 Major2 1952 792 1603 0 - 1584 1885 - 18	0 - 50	0 - 50

Intersection						
Int Delay, s/veh	3.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	LDL			MDIK	JUL	
Lane Configurations Traffic Vol, veh/h	25	લી 13	↑ 22	1	1	ام 1
Future Vol, veh/h	25	13	22	1	1	1
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	2,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	28	14	24	1	1	1
	Major1		Major2		Minor2	
Conflicting Flow All	25	0	-	0	95	25
Stage 1	-	-	-	-	25	-
Stage 2	-	-	-	-	70	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1589	-	-	-	905	1051
Stage 1	-	-	-		998	-
Stage 2	-	-	_	-	953	_
Platoon blocked, %					700	
Mov Cap-1 Maneuver	1589				889	1051
Mov Cap-1 Maneuver	1307				889	1001
					980	
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	953	-
Approach	EB		WB		SB	
HCM Control Delay, s	4.8		0		8.4	
HCM LOS	4.0		U		Α.	
TIGW E03						
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1589	-	-	-	1051
HCM Lane V/C Ratio		0.017	-	-	-	0.001
HCM Control Delay (s)		7.3	0	-	-	8.4
HCM Lane LOS		A	Α	-		Α
HCM 95th %tile Q(veh)	0.1	-		-	0
/out /out 2(ven	,	0.1				0

Mountain View Medical Center Existing AM

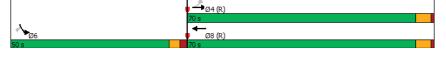
7: Med. Center Dwy/Albertson's Dwy & Shea Blvd
HCM 6th TWSC

Intersection												
Int Delay, s/veh	0.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተ ተኈ		7	ተተተ	7			7			7
Traffic Vol, veh/h	50	1764	33	19	1335	30	0	0	12	0	0	31
Future Vol, veh/h	50	1764	33	19	1335	30	0	0	12	0	0	31
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	205	-	-	85	-	150	-	-	0	-	-	0
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	56	1960	37	21	1483	33	0	0	13	0	0	34
Major/Minor	Major1		- 1	Major2		N	/linor1		N			
Conflicting Flow All	1516	0	0	1997	0	0	-	-	999	-	-	742
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	5.34	-	-	5.34	-	-	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.12	-	-	3.12	-	-	-	-	3.92	-	-	3.92
Pot Cap-1 Maneuver	*757	-	-	*623	-	-	0	0	*496	0	0	*602
Stage 1	-	-	-	-	-	-	0	0	-	0	0	-
Stage 2	-	-	-	-	-	-	0	0	-	0	0	-
Platoon blocked, %	1	-	-	1	-	-			1			1
Mov Can-1 Maneuver	*757			*622					*406			*602

Mov Cap-1 Maneuver	*757	-	-	*623	-	-	-	-	*496	-	-	*602		
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-		
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	0.3			0.2			12.5			11.3				
HCM LOS							В			В				

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1
Capacity (veh/h)	496	* 757	-	-	* 623	-	-	602
HCM Lane V/C Ratio	0.027	0.073	-	-	0.034	-	-	0.057
HCM Control Delay (s)	12.5	10.1	-	-	11	-	-	11.3
HCM Lane LOS	В	В	-	-	В	-	-	В
HCM 95th %tile Q(veh)	0.1	0.2	-	-	0.1	-	-	0.2

Notes			
~: Volume exceeds capacity	\$: Delay exceeds 300s	+: Computation Not Defined	*: All major volume in platoon


 07/03/2018
 Synchro 10 Report

 Civtech
 Page 9

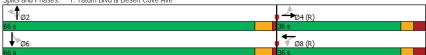
Mountain View Medical Center Existing AM

8: Shea Blvd & 50th Street Timing Report, Sorted By Phase

	- 4	*	•
Phase Number	4	6	8
Movement	EBTL	SBL	WBT
Lead/Lag			
Lead-Lag Optimize			
Recall Mode	C-Max	Max	C-Max
Maximum Split (s)	70	50	70
Maximum Split (%)	58.3%	41.7%	58.3%
Minimum Split (s)	25.3	29.2	25.3
Yellow Time (s)	4.3	3	4.3
All-Red Time (s)	1	2.2	1
Minimum Initial (s)	15	5	15
Vehicle Extension (s)	3	3	3
Minimum Gap (s)	3	3	3
Time Before Reduce (s)	0	0	0
Time To Reduce (s)	0	0	0
Walk Time (s)	8	8	8
Flash Dont Walk (s)	12	16	12
Dual Entry	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes
Start Time (s)	47	117	47
End Time (s)	117	47	117
Yield/Force Off (s)	111.7	41.8	111.7
Yield/Force Off 170(s)	99.7	25.8	99.7
Local Start Time (s)	0	70	0
Local Yield (s)	64.7	114.8	64.7
Local Yield 170(s)	52.7	98.8	52.7
Intersection Summary			
Cycle Length			120
Control Type	Actu	ated-Coo	
Natural Cycle			65
Offset: 47 (39%), Referenc	ed to phase	4:EBTL	and 8:WE
Splits and Phases: 8: Sh	iea Blvd & 5	0th Stree	et

8: Shea Blvd & 50th Street HCM 6th Signalized Intersection Summary

	۶	→	—	•	\	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	Ť	ተተተ	∱ î₃		J.	7	
Traffic Volume (veh/h)	35	1760	1323	48	67	39	
Future Volume (veh/h)	35	1760	1323	48	67	39	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	39	1956	1470	53	74	43	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	130	2753	1886	68	665	592	
Arrive On Green	0.54	0.54	0.54	0.54	0.37	0.37	
Sat Flow, veh/h	342	5274	3592	126	1781	1585	
Grp Volume(v), veh/h	39	1956	745	778	74	43	
Grp Sat Flow(s), veh/h/ln	342	1702	1777	1848	1781	1585	
Q Serve(g_s), s	12.3	34.3	39.9	40.2	3.3	2.1	
Cycle Q Clear(g_c), s	52.5	34.3	39.9	40.2	3.3	2.1	
Prop In Lane	1.00			0.07	1.00	1.00	
Lane Grp Cap(c), veh/h	130	2753	958	996	665	592	
V/C Ratio(X)	0.30	0.71	0.78	0.78	0.11	0.07	
Avail Cap(c_a), veh/h	130	2753	958	996	665	592	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	42.9	20.7	21.9	22.0	24.6	24.2	
Incr Delay (d2), s/veh	5.8	1.6	6.2	6.1	0.3	0.2	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	2.3	19.7	24.6	25.5	2.6	1.5	
Unsig. Movement Delay, s/veh	40.7	20.0	20.4	00.4	04.0	045	
LnGrp Delay(d),s/veh	48.7	22.2	28.1	28.1	24.9	24.5	
LnGrp LOS	D	C	C	С	C	С	_
Approach Vol, veh/h		1995	1523		117		
Approach Delay, s/veh		22.8	28.1		24.8		
Approach LOS		С	С		С		
Timer - Assigned Phs				4		6	
Phs Duration (G+Y+Rc), s				70.0		50.0	
Change Period (Y+Rc), s				5.3		5.2	
Max Green Setting (Gmax), s				64.7		44.8	
Max Q Clear Time (g_c+l1), s				54.5		5.3	
Green Ext Time (p_c), s				8.5		0.3	
Intersection Summary							
HCM 6th Ctrl Delay			25.1				
HCM 6th LOS			23.1 C				
I IOWI OIII EUS			C				


Mountain View Medical Center Existing PM

1: Tatum Blvd & Desert Cove Ave Timing Report, Sorted By Phase

		- 2	_ ∖ ⊳	7
Phase Number	2	4	6	8
Movement	NBTL	EBTL	SBTL	WBTL
Lead/Lag				
Lead-Lag Optimize				
Recall Mode	None	C-Max	None	C-Max
Maximum Split (s)	66	36	66	36
Maximum Split (%)	64.7%	35.3%	64.7%	35.3%
Minimum Split (s)	25.3	35	25.3	35
Yellow Time (s)	4.3	3	4.3	3
All-Red Time (s)	1	3	1	3
Minimum Initial (s)	15	4	15	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	8	7	8	7
Flash Dont Walk (s)	12	22	12	22
Dual Entry	Yes	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	86	50	86	50
End Time (s)	50	86	50	86
Yield/Force Off (s)	44.7	80	44.7	80
Yield/Force Off 170(s)	32.7	58	32.7	58
Local Start Time (s)	36	0	36	0
Local Yield (s)	96.7	30	96.7	30
Local Yield 170(s)	84.7	8	84.7	8
Intersection Summary				
Cycle Length			102	
Control Type	Actu	ated-Coo	rdinated	
Natural Cycle			100	

Offset: 50 (49%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Splits and Phases: 1: Tatum Blvd & Desert Cove Ave

Synchro 10 Report Page 1 07/03/2018 Civtech

Mountain View Medical Center Existing PM

1: Tatum Blvd & Desert Cove Ave HCM 6th Signalized Intersection Summary

	۶	→	\rightarrow	•	←	•	•	†	/	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ተተተ	7	ሻ	ተተ _ጮ	
Traffic Volume (veh/h)	25	1	25	68	1	89	9	1524	36	100	1131	2
Future Volume (veh/h)	25	1	25	68	1	89	9	1524	36	100	1131	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	28	1	28	76	1	99	10	1693	40	111	1257	2
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	246	25	211	223	21	250	277	3039	943	181	3133	5
Arrive On Green	0.29	0.29	0.29	0.29	0.29	0.29	0.60	0.60	0.60	0.60	0.60	0.60
Sat Flow, veh/h	659	84	717	587	73	849	441	5106	1585	279	5265	8
Grp Volume(v), veh/h	57	0	0	176	0	0	10	1693	40	111	813	446
Grp Sat Flow(s),veh/h/ln	1459	0	0	1509	0	0	441	1702	1585	279	1702	1869
Q Serve(g_s), s	0.0	0.0	0.0	6.6	0.0	0.0	1.3	20.5	1.1	40.2	13.0	13.0
Cycle Q Clear(g_c), s	2.5	0.0	0.0	9.2	0.0	0.0	14.2	20.5	1.1	60.7	13.0	13.0
Prop In Lane	0.49		0.49	0.43		0.56	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	482	0	0	494	0	0	277	3039	943	181	2026	1112
V/C Ratio(X)	0.12	0.00	0.00	0.36	0.00	0.00	0.04	0.56	0.04	0.61	0.40	0.40
Avail Cap(c_a), veh/h	482	0	0	494	0	0	277	3039	943	181	2026	1112
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	0.54	0.54	0.54	1.00	1.00	1.00
Uniform Delay (d), s/veh	26.3	0.0	0.0	28.6	0.0	0.0	14.8	12.5	8.6	31.0	11.0	11.0
Incr Delay (d2), s/veh	0.5	0.0	0.0	2.0	0.0	0.0	0.0	0.1	0.0	6.1	0.1	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	1.9	0.0	0.0	6.6	0.0	0.0	0.2	10.5	0.6	5.3	8.1	8.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	26.8	0.0	0.0	30.6	0.0	0.0	14.8	12.6	8.6	37.1	11.1	11.2
LnGrp LOS	С	Α	Α	С	Α	Α	В	В	Α	D	В	В
Approach Vol, veh/h		57			176			1743			1370	
Approach Delay, s/veh		26.8			30.6			12.6			13.3	
Approach LOS		С			С			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		66.0		36.0		66.0		36.0				
Change Period (Y+Rc), s		5.3		6.0		5.3		6.0				
Max Green Setting (Gmax), s		60.7		30.0		60.7		30.0				
Max Q Clear Time (g_c+l1), s		22.5		4.5		62.7		11.2				
Green Ext Time (p_c), s		18.9		0.3		0.0		0.9				
Intersection Summary												
intersection summary												
HCM 6th Ctrl Delay			14.0									

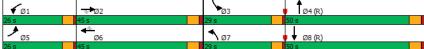
Synchro 10 Report Page 2 07/03/2018 Civtech

Mountain View Medical Center Existing PM

2: Tatum Blvd & Shea Blvd Timing Report, Sorted By Phase

	•	*	-	†	•	**	1	¥	
Phase Number	1	2	3	4	5	6	7	8	
Movement	WBL	EBT	SBL	NBT	EBL	WBT	NBL	SBT	_
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	C-Max	None	None	None	C-Max	
Maximum Split (s)	26	45	29	50	26	45	29	50	
Maximum Split (%)	17.3%	30.0%	19.3%	33.3%	17.3%	30.0%	19.3%	33.3%	
Minimum Split (s)	10	36.9	20	40	10	36.9	20	40	
Yellow Time (s)	4	4.3	4	4.3	4	4.3	4	4.3	
All-Red Time (s)	1	1.6	1	1.7	1	1.6	1	1.7	
Minimum Initial (s)	5	15	15	15	5	15	15	15	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		8		8		8		8	
Flash Dont Walk (s)		23		26		23		26	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	105	131	26	55	105	131	26	55	
End Time (s)	131	26	55	105	131	26	55	105	
Yield/Force Off (s)	126	20.1	50	99	126	20.1	50	99	
Yield/Force Off 170(s)	126	147.1	50	73	126	147.1	50	73	
Local Start Time (s)	50	76	121	0	50	76	121	0	
Local Yield (s)	71	115.1	145	44	71	115.1	145	44	
Local Yield 170(s)	71	92.1	145	18	71	92.1	145	18	
Intersection Summary									

Intersection Summary


Cycle Length 150

Control Type Actuated-Coordinated

Natural Cycle 130

Offset: 55 (37%), Referenced to phase 4:NBT and 8:SBT, Start of Green

Synchro 10 Report Page 3 07/03/2018 Civtech

Mountain View Medical Center Existing PM

2: Tatum Blvd & Shea Blvd HCM 6th Signalized Intersection Summary

	۶	→	•	•	—	•	•	†	~	\	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14	^	7	77	ተተተ	7	ሻሻ	ተተ _ጉ		ሻሻ	^	
Traffic Volume (veh/h)	330	1079	213	175	1392	191	555	995	239	254	608	254
Future Volume (veh/h)	330	1079	213	175	1392	191	555	995	239	254	608	254
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	367	1199	237	194	1547	212	617	1106	266	282	676	282
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	417	1583	491	247	1331	413	553	1531	368	346	1110	456
Arrive On Green	0.12	0.31	0.31	0.07	0.26	0.26	0.16	0.37	0.37	0.10	0.31	0.31
Sat Flow, veh/h	3456	5106	1585	3456	5106	1585	3456	4109	988	3456	3553	1459
Grp Volume(v), veh/h	367	1199	237	194	1547	212	617	916	456	282	647	311
Grp Sat Flow(s),veh/h/ln	1728	1702	1585	1728	1702	1585	1728	1702	1693	1728	1702	1608
Q Serve(g_s), s	15.7	31.8	18.2	8.3	39.1	17.1	24.0	34.7	34.7	12.0	24.2	24.7
Cycle Q Clear(g_c), s	15.7	31.8	18.2	8.3	39.1	17.1	24.0	34.7	34.7	12.0	24.2	24.7
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.58	1.00		0.91
Lane Grp Cap(c), veh/h	417	1583	491	247	1331	413	553	1268	631	346	1064	502
V/C Ratio(X)	0.88	0.76	0.48	0.79	1.16	0.51	1.12	0.72	0.72	0.82	0.61	0.62
Avail Cap(c_a), veh/h	484	1583	491	484	1331	413	553	1268	631	553	1064	502
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	0.91	0.91
Uniform Delay (d), s/veh	64.9	46.7	42.0	68.5	55.5	47.3	63.0	40.4	40.4	66.1	43.8	43.9
Incr Delay (d2), s/veh	15.2	2.2	0.7	5.4	81.7	1.1	74.2	3.6	7.0	4.6	2.4	5.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	12.4	19.9	11.7	7.0	38.5	11.3	24.1	21.6	22.2	9.2	15.7	15.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	80.1	48.8	42.7	74.0	137.1	48.4	137.2	44.0	47.5	70.8	46.1	49.1
LnGrp LOS	F	D	D	E	F	D	F	D	D	E	D	D
Approach Vol, veh/h		1803			1953			1989			1240	
Approach Delay, s/veh		54.4			121.2			73.7			52.5	
Approach LOS		D			F			E			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	15.7	52.4	20.0	61.9	23.1	45.0	29.0	52.9				
Change Period (Y+Rc), s	5.0	* 5.9	5.0	* 6	5.0	* 5.9	5.0	* 6				
Max Green Setting (Gmax), s	21.0	* 39	24.0	* 44	21.0	* 39	24.0	* 44				
Max Q Clear Time (g_c+I1), s	10.3	33.8	14.0	36.7	17.7	41.1	26.0	26.7				
Green Ext Time (p_c), s	0.4	3.7	0.7	4.9	0.4	0.0	0.0	6.2				
Intersection Summary												
HCM 6th Ctrl Delay			78.2									
HCM 6th LOS			Е									

07/03/2018 Synchro 10 Report Civtech Page 4

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection													
Int Delay, s/veh	1.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$	LDIT	******	4	WOIL	*	ተተተ	HOIL	ODL	^ ^	7	
Traffic Vol, veh/h	21	0	112	1	0	56	49	1757	7	2	884	132	
Future Vol. veh/h	21	0	112	1	0	56	49	1757	7	2	884	132	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	004	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	Jiop	Jiop	None	Jiop	Jiop -	None	1100	1100	None	1100	-	None	
storage Length			NOTIC			- INOTIC	105		INOTIC			150	
eh in Median Storag	e.# -	0			0		100	0			0	130	
Grade, %	C, π -	0			0			0			0		
eak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
eavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Nymt Flow	23	0	124	1	0	62	54	1952	8	2	982	147	
IVIIIL FIOW	23	U	124	- 1	U	02	54	1902	ō	2	902	147	
lajor/Minor	Minor2		1	Vinor1		- 1	Major1		N	/lajor2			
Conflicting Flow All	1875	3054	491	2461	3197	980	1129	0	0	1960	0	0	
Stage 1	986	986		2064	2064	-	-		-			-	
Stage 2	889	2068		397	1133				-				
ritical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34		-	5.34	-		
ritical Hdwy Stg 1	7.34	5.54		7.34	5.54	-	-			- 0.0			
ritical Hdwy Stg 2	6.74	5.54		6.74	5.54		_		_			-	
ollow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12			3.12			
ot Cap-1 Maneuver	164	18	*718	*58	13	214	737			131			
Stage 1	726	694	710	*35	96	217	737			131			
Stage 2	276	95		*737	576								
latoon blocked. %	1	1	1	1	1		1						
ov Cap-1 Maneuver		16	*718	*44	12	214	737			131			
lov Cap-1 Maneuver	107	16	710	*44	12	214	131			131			
Stage 1	673	664		*32	89		_	_			_		
	181	88		*583	551								
Stage 2	101	00		203	100	-	-	-		-	-	-	
pproach	EB			WB			NB			SB			
ICM Control Delay, s	11.1			31.1			0.3			0.1			
CM LOS	В			D									
		NE	NOT	NDD			0.01	007	000				
Minor Lane/Major Mvr	nt	NBL	NBT	NRK	EBLn1V		SBL	SBT	SBR				
apacity (veh/h)		737	-	-	718	200	131	-	-				
ICM Lane V/C Ratio		0.074	-	-		0.317	0.017	-	-				
ICM Control Delay (s)	10.3	-	-	11.1	31.1	33	-	-				
CM Lane LOS		В	-	-	В	D	D	-	-				
ICM 95th %tile Q(veh	1)	0.2	-	-	0.6	1.3	0.1	-	-				
lotes													
	nacity	¢. Da	lay ove	oods 2	00c	Com	nutation	Not D	ofinod	*, AII	major	rolume :	n platoon
~: Volume exceeds capacity		\$: DE	ady exc	eeds 3	UUS	+. Com	putatior	I NOLD	eilled	: All	major \	rolume I	n platoon

Intersection													
Int Delay, s/veh	1.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4		ች	ተ ተኈ			ተ ተጉ		
Traffic Vol, veh/h	7	1	2	7	0	39	0	1738	3	28	989	4	
Future Vol, veh/h	7	1	2	7	0	39	0	1738	3	28	989	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	- '-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-		-			-	50		-			-	
Veh in Median Storage	.# -	0	-		0	-	-	0	-		0	-	
Grade, %	-	0	-		0	-		0	-		0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mymt Flow	8	1	2	8	0	43	0	1931	3	31	1099	4	
WWW. FIOW	U			U	U	10	0	1701	3	31	1077		
Major/Minor N	Minor2		1	Minor1		N	Najor1		N	Najor2			
Conflicting Flow All	1935	3097	552	2435	3098	967	1103	0	0	1934	0	0	
Stage 1	1163	1163	-	1933	1933	-	-	-	-	-	-	-	
Stage 2	772	1934		502	1165								
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34			5.34			
Critical Hdwy Stg 1	7.34	5.54	7.11	7.34	5.54	7.11	0.01			0.01			
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54								
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12			3.12			
Pot Cap-1 Maneuver	177	18	*682	*70	18	218	*858			135			
Stage 1	684	656	002	*43	112	210	000			133		-	
Stage 2	325	111	-	*700	654								
Platoon blocked, %	323	1	1	1	1	-	1		-	-		-	
Mov Cap-1 Maneuver	75	7	*682	*33	7	218	*858			135			
	75	7	002	*33	7	210	000		-	133		-	
Mov Cap-2 Maneuver Stage 1	684	266	-	*43	112	-	-	-	-	-	-		
			-	*282		-	-		-		-	-	
Stage 2	260	111		-282	266	-	-	-	-	-	-		
Approach	EB			WB			NB			SB			
HCM Control Delay, s				57			0			1.1			
HCM LOS	119.1 F			57 F			U			1.1			
HCW LOS	г												
Minor Lane/Major Mvm	it	NBL	NBT	NRP	EBLn1V	VRI n1	SBL	SBT	SBR				
Capacity (veh/h)		* 858	HUI	HUIN	42	118	135	551	JUIN				
HCM Lane V/C Ratio		000			0.265		0.23						
HCM Control Delay (s)		0			119.1	57	39.5						
HCM Lane LOS		A			F	F	39.5						
HCM 95th %tile Q(veh))	0	-	-	0.9	1.9	0.8	-	-				
Notes													
	annih.	¢. D.	alou o	oodo 2	200	Com	nutoti	Mot D	ofinad	*. 611	maia	ioliums :	in platea
 Volume exceeds cap 	Jacily	2: D6	elay exc	eeus 3	UUS	+: Com	putatioi	i NOLD	enned	: All	major \	roiume i	in platoon

Early Syeh	Intersection								
### TEBL EBR NBL NBT SBT SBR	Int Delay, s/veh	0.3							
Configurations (Vi			EDD	NDI	NDT	CDT	CDD		
ic Vol, veh/h 14 18 42 1773 924 57 re Vol, veh/h 14 18 42 1773 924 57 ricting Peds, #hr 0 0 0 0 0 0 0 Control Stop Stop Free Free Free Free Free Free Free Fre	Movement		EBR						
re Vol, veh/h 14			10						
Control									
Control Stop Stop Free Free Free Free Free hannelized - None grige Length 0 - Stop - None griger Length 0 - None griger Length 0 - Stop - None griger Length 0 - None									
Stage Stag			-	-	-	-	-		
ge Length 0 - 50	Sign Control								
In Median Storage, # 0									
e, % 0 0 0 0 - Hour Factor 90 90 90 90 90 90 90 90 yo Vehicles, % 2 2 2 2 2 2 2 2 2 2 1 Flow 16 20 47 1970 1027 63 ***T/Minor Minor2 Major1 Major2 **Iciting Flow All 1909 514 1090 0 - 0 **Stage 1 1027	Storage Length	-							
Hour Factor 90 90 90 90 90 90 90 90 90 90 90 90 90									
r/Minor Minor2 Major1 Major2 licting Flow All 1909 514 1090 0 - 0 Stage 1 1027	Grade, %								
Flow	Peak Hour Factor								
r/Minor Minor2 Major1 Major2 licting Flow All 1909 514 1090 0 - 0 Stage 1 1027 Stage 2 882	leavy Vehicles, %								
Stage 1	/Ivmt Flow	16	20	47	1970	1027	63		
Stage 1									
Stage 1	lajor/Minor	Minor2		Major1	N	/lajor2			
Stage 2	Conflicting Flow All					-	0		
Stage 2 882				-					
All Hdwy Stg 1 6.29 6.94 4.14 - - - - - - - - -									
ral Hdwy Stg 1	Critical Hdwy		6.94	4.14					
ral Hdwy Stg 2	ritical Hdwy Stg 1								
w-up Hdwy 3.67 3.32 2.22	ritical Hdwy Stg 2		-	-			-		
Cap-1 Maneuver 338 *702 *1050 - - -	ollow-up Hdwy			2.22					
Stage 1 *635 -	ot Cap-1 Maneuver								
Stage 2 *339 -									
1									
Cap-1 Maneuver *322 *702 *1050	Platoon blocked, %		1	1					
Cap-2 Maneuver *263 Stage 1 *607	Nov Cap-1 Maneuver								
Stage 1	Nov Cap-2 Maneuver		-	-					
Stage 2 *339									
Control Delay, s 14.7 0.2 0									
Control Delay, s 14.7 0.2 0	olugo 2	337							
Control Delay, s 14.7 0.2 0	pproach	ED		MP		CP			
Tane/Major Mvmt									
r Lane/Major Mvmt NBL NBT EBLn1 SBT SBR ucity (veh/h) *1050 - 406 Lane V/C Ratio 0.044 - 0.088 Control Delay (s) 8.6 - 14.7 Lane LOS A - B 195th %tile Q(veh) 0.1 - 0.3 S	TCM CONTROL Delay, S TCM LOS			0.2		0			
105 105	ICIVI LU3	D							
105 105	Ainer Lane/Mais- Min	mt	ND	NDT	EDI n1	CDT	CDD		
Lane V/C Ratio 0.044 - 0.088 - - Control Delay (s) 8.6 - 14.7 - Lane LOS A B - 95th %tile Q(veh) 0.1 - 0.3 - s		mt				SDI	SDR		
Control Delay (s)						-	-		
Lane LOS A - B 95th %tile Q(veh) 0.1 - 0.3 s		.)				-			
95th %tile Q(veh) 0.1 - 0.3 s)				-	-		
S		L\				-			
	1CIVI 95th %tile Q(vel	n)	0.1	-	0.3	-	-		
olume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoor	lotes								
	: Volume exceeds ca	apacity	\$: De	elay exc	ceeds 30	00s	+: Com	putation Not Defined	*: All major volume in platoc

Intersection	_					_
Int Delay, s/veh	4.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ની				7
Traffic Vol, veh/h	11	24	17	2	1	33
Future Vol, veh/h	11	24	17	2	1	33
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	2,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	27	19	2	1	37
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	21	0	-	0	71	20
Stage 1	- 21	U		-	20	20
	- 1		- 1		51	
Stage 2	4.12				6.42	6.22
Critical Hdwy		-		-		
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1595	-	-	-	933	1058
Stage 1	-	-	-	-	1003	-
Stage 2	-	-	-	-	971	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1595	-	-	-	926	1058
Mov Cap-2 Maneuver	-	-	-	-	926	-
Stage 1	-	-	-	-	995	-
Stage 2	-	-	-	-	971	-
, and the second second						
Approach	EB		WB		SB	
HCM Control Delay, s	2.3		0		8.5	
HCM LOS	2.3		U		Α.5	
TICIVI EOS						
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1595	-	-	-	1058
HCM Lane V/C Ratio		0.008	-	-	-	0.035
HCM Control Delay (s)		7.3	0	-	-	8.5
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)	0	-	-	-	0.1

 07/03/2018
 Synchro 10 Report

 Civtech
 Page 7

Mountain View Medical Center Existing PM

Intersection

7: Med. Center Dwy/Albertson's Dwy & Shea Blvd HCM 6th TWSC

Mountain View Medic	al Center	r
Existing PM		
`		_

8: Shea Blvd & 50th Street Timing Report, Sorted By Phase

Phase Number	4	6	8
Movement	EBTL	SBL	WBT
Lead/Lag			
Lead-Lag Optimize			
Recall Mode	C-Max	Max	C-Max
Maximum Split (s)	70	50	70
Maximum Split (%)	58.3%	41.7%	58.3%
Minimum Split (s)	25.3	29.2	25.3
Yellow Time (s)	4.3	3	4.3
All-Red Time (s)	1	2.2	1
Minimum Initial (s)	15	5	15
Vehicle Extension (s)	3	3	3
Minimum Gap (s)	3	3	3
Time Before Reduce (s)	0	0	0
Time To Reduce (s)	0	0	0
Walk Time (s)	8	8	8
Flash Dont Walk (s)	12	16	12
Dual Entry	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes
Start Time (s)	3	73	3
End Time (s)	73	3	73
Yield/Force Off (s)	67.7	117.8	67.7
Yield/Force Off 170(s)	55.7	101.8	55.7
Local Start Time (s)	0	70	0
Local Yield (s)	64.7	114.8	64.7
Local Yield 170(s)	52.7	98.8	52.7
Intersection Summary			
Cycle Length			120
Control Type	Actu	ated-Coo	
Natural Cycle			90
Offset: 3 (3%), Referenced	to phase 4:	EBTL an	d 8:WBT
Splits and Phases: 8: Sh	ea Blvd & 5		

Splits and Phases:	8: Shea Blvd & 50th Street	
		Ø4 (R)
		70 s
≪ V Ø6		→ Ø8 (R)
50 s		70 s

IIIIEISECIIOII													
Int Delay, s/veh	0.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	ተ ተጉ		*	ተተተ	7			7			7	
Traffic Vol, veh/h	36		12	8	1738	81	0	0	26	0	0	50	
Future Vol, veh/h	36	1493	12	8	1738	81	0	0	26	0	0	50	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None		-	None	
Storage Length	205	-	-	85		150	-		0	-	-	0	
Veh in Median Storage	.# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %		0	-		0	-	-	0	-	-	0		
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	40		13	9	1931	90	0	0	29	0	0	56	
							-	_		-			
Major/Minor N	Major1			Major2			Minor1		. 1	/linor2			
Conflicting Flow All	2021	0	0	1672	0	0	-		836	-	-	966	
Stage 1	2021	-	-	1072	-	-			-			700	
Stage 2													
Critical Hdwy	5.34			5.34					7.14			7.14	
Critical Hdwy Stg 1	3.34			J.JT					7.17			7.17	
Critical Hdwy Stg 2									-				
ollow-up Hdwy	3.12			3.12					3.92			3.92	
Pot Cap-1 Maneuver	598			183			0	0	267	0	0	*514	
Stage 1	390		-	103			0	0	201	0	0	314	
Stage 2							0	0		0	0		
Platoon blocked, %	1						U	U	-	U	U	1	
Mov Cap-1 Maneuver	598			183					267			*514	
Mov Cap-1 Maneuver	390			103					207			314	
Stage 1		_	-	_			_		_				
Stage 2					- 1								
Staye 2									-				
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.3			0.1			20.1			12.9			
HCM LOS	0.3			U. I			20.1 C			12.9 B			
TOW EUS							C			D			
Minor Lane/Major Mvm	ıt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	CRI n1				
Capacity (veh/h)	ıı	267	598	EDI	LDK	183	WDI	WDR.	514				
					- 1				0.108				
HCM Control Dolay (c)		20.1	0.067	-	-	0.049	-	-	12.9				
ICM Control Delay (s) ICM Lane LOS		20.1 C	11.5 B	-		25.7 D			12.9 B				
				-	-		-	-	_				
HCM 95th %tile Q(veh))	0.4	0.2	-	-	0.2	-	-	0.4				
Votes													
: Volume exceeds cap	oacity	\$: D	elay exc	eeds 3	00s	+: Com	putation	Not D	efined	*: All	major v	olume i	in platoon

 07/03/2018
 Synchro 10 Report

 Civtech
 Page 9

8: Shea Blvd & 50th Street HCM 6th Signalized Intersection Summary

	۶	→	—	4	\	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	7	^	† 19			7	
Traffic Volume (veh/h)	52	1499	1803	44	128	65	
Future Volume (veh/h)	52	1499	1803	44	128	65	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	58	1666	2003	49	142	72	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	60	2753	1912	47	665	592	
Arrive On Green	0.54	0.54	0.54	0.54	0.37	0.37	
Sat Flow, veh/h	205	5274	3639	86	1781	1585	
Grp Volume(v), veh/h	58	1666	1000	1052	142	72	
Grp Sat Flow(s), veh/h/ln	205	1702	1777	1855	1781	1585	
Q Serve(q_s), s	0.0	26.8	64.7	64.7	6.5	3.6	
Cycle Q Clear(q c), s	64.7	26.8	64.7	64.7	6.5	3.6	
Prop In Lane	1.00			0.05	1.00	1.00	
Lane Grp Cap(c), veh/h	60	2753	958	1000	665	592	
V/C Ratio(X)	0.97	0.61	1.04	1.05	0.21	0.12	
Avail Cap(c_a), veh/h	60	2753	958	1000	665	592	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	60.0	18.9	27.6	27.7	25.6	24.7	
Incr Delay (d2), s/veh	107.0	1.0	41.1	43.2	0.7	0.4	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	6.4	15.9	48.6	51.5	5.2	2.6	
Unsig. Movement Delay, s/veh			.0.0	01.0	0.2	2.3	
LnGrp Delay(d),s/veh	167.0	19.9	68.7	70.9	26.3	25.1	
LnGrp LOS	F	В	F	70.7 F	C	C	
Approach Vol, veh/h		1724	2052		214		
Approach Delay, s/veh		24.9	69.8		25.9		
Approach LOS		24.9 C	09.0 F		23.9 C		
**		C	E		C		
Timer - Assigned Phs				4		6	
Phs Duration (G+Y+Rc), s				70.0		50.0	
Change Period (Y+Rc), s				5.3		5.2	
Max Green Setting (Gmax), s				64.7		44.8	
Max Q Clear Time (g_c+I1), s				66.7		8.5	
Green Ext Time (p_c), s				0.0		0.6	
Intersection Summary							
HCM 6th Ctrl Delay			48.0				Г
HCM 6th LOS			D				

APPENDIX D

TRIP GENERATION CALCULATIONS

Proposed

January 2017 Appendix D

Land Use Types and Size	_	_	
Proposed Use	Amount Units	ITE LUC	ITE Land Use Name
Medical Office	91.318 KSF	720	Medical-Dental Office Building
Modical Office (Existing)	50 060 KSE	720	Modical Dontal Office Building

⁻Abbreviations: ITE = Institute of Transportation Engineers, LUC = land use code, SF = square feet, KSF = 1,000 square feet, DU = Dwelling Units, Keys = keyed guest units.

Weighted Average Rate or Fitted Cu	rve Equation Used in Ana	lysis?		_		_	
Proposed Use	ADT	Trips	AM	Trips	PM	Trips	(not used)
Medical Office	Fitted Curve	3,420	Fitted Curve	206	Fitted Curve	312	
Medical Office (Existing)	Fitted Curve	2,216	Fitted Curve	142	Fitted Curve	205	

Notes: -ITE methodology per the Trip Generation Handbook is the basis for deciding which rate/equation to use. Exceptions are highlighted.

Note: The proposed minus the existing trips (red text) generated, results in the net number of base trips.

Base Trips	Ü	Al	DT			A	M		·	F	PM		(not used)
Proposed Use	% In	In	Out	Total	% In	ln	Out	Total	% In	In	Out	Total	
Medical Office	50%	1,710	1,710	3,420	78%	161	45	206	28%	87	225	312	
Medical Office (Existing)	50%	1,108	1,108	2,216	78%	111	31	142	28%	57	148	205	
Net		602	602	1,204		50	14	64		30	77	107	

Notes: -Per ITE's *Trip Generation Handbook*, 3rd edition, the rates in the *Trip Generation Manual* represent base trip generation rates for "low-density, single-use, suburban developments with little or no transit service, limited bicycle access, and little or no convenient pedestrian access" and that the "analyst needs to adjust the baseline vehicle trip generation" if the subject development is an infill site, mixed-use development, transit-friendly development, is located within an urban core area or near a school, and/or other conditions.

-The base trips projected for the site are displayed in the table above. The following pages, if any, present appropriate adjustments to the base volumes and/or separate trip types.

APPENDIX E

BACKGROUND TRAFFIC CALCULATIONS

Source(s) http://azmag.gov/Programs/Transportation/System-Analysis-and-Forecasting/Traffic-Volur

Location of counts: Tatum Boulevard north of Shea Boulevard

				Expansion
			Avg Growth	Factor to
	Year	Volume	Rate to 2015	2015
Beginning	2015	35,100		
End	2011	33,900	0.9%	1.035

Location of counts: Shea Boulevard East of Tatum Boulevard

Expansion Avg Growth Factor to Rate to 2015 2015

Year Volume Beginning 2015 45200 End 2011 39,800 3.2% 0.882

> **Growth Rate Average** 2.1%

Growth Rate Used 2.1% Per-Year Multiplier 1.021

	Expansion	
Year	Factor(s)	
2018	1.000	
2019	1.021	<- Expansion factor to opening year
2020	1.041	
2021	1.063	
2022	1.085	
2023	1.107	
2024	1.129	'<- Expansion factor to 5 years after opening
2025	1.153	
2026	1.176	
2027	1.200	
2028	1.225	
2029	1.250	
2030	1.276	
2031	1.302	
2032	1.329	
2033	1.356	
2034	1.384	
2035	1.412	
2036	1.441	
2037	1.470	
2038	1.501	

APPENDIX F

PEAK HOUR TRAFFIC ANALYSIS

Mountain View Medical Center Background AM

1: Tatum Blvd & Desert Cove Ave Timing Report, Sorted By Phase

	- <\$	- 4	_ - }⊳	7
Phase Number	2	4	6	8
Movement	NBTL	EBTL	SBTL	WBTL
Lead/Lag				
Lead-Lag Optimize				
Recall Mode	None	C-Max	None	C-Max
Maximum Split (s)	66	36	66	36
Maximum Split (%)	64.7%	35.3%	64.7%	35.3%
Minimum Split (s)	25.3	35	25.3	35
Yellow Time (s)	4.3	3	4.3	3
All-Red Time (s)	1	3	1	3
Minimum Initial (s)	15	4	15	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	8	7	8	7
Flash Dont Walk (s)	12	22	12	22
Dual Entry	Yes	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	55	19	55	19
End Time (s)	19	55	19	55
Yield/Force Off (s)	13.7	49	13.7	49
Yield/Force Off 170(s)	1.7	27	1.7	27
Local Start Time (s)	36	0	36	0
Local Yield (s)	96.7	30	96.7	30
Local Yield 170(s)	84.7	8	84.7	8
Intersection Summary				
Cycle Length			102	
Control Type	Actu	ated-Coo	rdinated	
Natural Cycle			65	
Offset: 19 (19%), Reference	ed to phase	e 4:EBTL	and 8:WE	3TL, Start

Splits and Phases: 1: Tatum Blvd & Desert Cove Ave

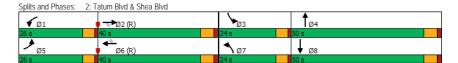
Civtech

Synchro 10 Report Page 1 07/03/2018

Mountain View Medical Center Background AM

1: Tatum Blvd & Desert Cove Ave HCM 6th Signalized Intersection Summary

-	•		$\overline{}$		-	•	_	*			ı	J
		→	*	₩	Wor		7	l No.	7	•	+	•
Movement Lane Configurations	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT ↑↑↑	NBR	SBL	SBT ↑↑↑	SBR
Traffic Volume (veh/h)	9	4	5	20	4	50	30	TTT 838	1 37	87	1111	10
Future Volume (veh/h)	9	0	5	20	0	50	30	838	37	87	1111	10
Initial Q (Qb), veh	0	0	0	0	0	0	0	030	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	U	1.00	1.00	U	1.00	1.00	U	1.00	1.00	U	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1.00	No	1.00	1.00	No	1.00	1.00	No	1.00	1.00	No	1.00
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	10	0	6	22	0	56	33	931	41	97	1234	11
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	476	13	259	230	23	530	173	2102	652	233	2149	19
Arrive On Green	0.48	0.00	0.48	0.48	0.00	0.48	0.41	0.41	0.41	0.41	0.41	0.41
Sat Flow, veh/h	877	27	543	387	49	1109	447	5106	1585	578	5220	47
Grp Volume(v), veh/h	16	0	0	78	0	0	33	931	41	97	805	440
Grp Sat Flow(s), veh/h/ln	1447	0	0	1544	0	0	447	1702	1585	578	1702	1862
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	0.0	6.3	13.4	1.6	14.8	18.6	18.6
Cycle Q Clear(q_c), s	0.5	0.0	0.0	2.6	0.0	0.0	24.9	13.4	1.6	28.2	18.6	18.6
Prop In Lane	0.62	0.0	0.37	0.28	0.0	0.72	1.00	10.1	1.00	1.00	10.0	0.02
Lane Grp Cap(c), veh/h	748	0	0.07	783	0	0.72	173	2102	652	233	1401	766
V/C Ratio(X)	0.02	0.00	0.00	0.10	0.00	0.00	0.19	0.44	0.06	0.42	0.57	0.57
Avail Cap(c_a), veh/h	748	0	0	783	0	0	255	3039	943	339	2026	1108
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	0.84	0.84	0.84	1.00	1.00	1.00
Uniform Delay (d), s/veh	14.0	0.0	0.0	14.6	0.0	0.0	32.7	21.6	18.1	31.7	23.1	23.1
Incr Delay (d2), s/veh	0.1	0.0	0.0	0.3	0.0	0.0	0.4	0.1	0.0	1.2	0.4	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.4	0.0	0.0	1.9	0.0	0.0	1.3	8.7	1.1	3.8	11.8	12.8
Unsig. Movement Delay, s/veh	1											
LnGrp Delay(d),s/veh	14.1	0.0	0.0	14.9	0.0	0.0	33.1	21.7	18.2	32.9	23.5	23.8
LnGrp LOS	В	Α	Α	В	Α	Α	С	С	В	С	С	С
Approach Vol, veh/h		16			78			1005			1342	
Approach Delay, s/veh		14.1			14.9			21.9			24.3	
Approach LOS		В			В			С			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		47.3		54.7		47.3		54.7				
Change Period (Y+Rc), s		5.3		6.0		5.3		6.0				
Max Green Setting (Gmax), s		60.7		30.0		60.7		30.0				
Max Q Clear Time (g_c+l1), s		26.9		2.5		30.2		4.6				
Green Ext Time (p_c), s		8.7		0.0		11.8		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			22.9									
HCM 6th LOS			С									


Synchro 10 Report Page 2 07/03/2018 Civtech

Mountain View Medical Center Background AM

2: Tatum Blvd & Shea Blvd Timing Report, Sorted By Phase

	•	*	-	†	•	42	1	ţ	
Phase Number	1	2	3	4	5	6	7	8	
Movement	WBL	EBT	SBL	NBT	EBL	WBT	NBL	SBT	Т
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	26	40	24	50	26	40	24	50	
Maximum Split (%)	18.6%	28.6%	17.1%	35.7%	18.6%	28.6%	17.1%	35.7%	
Minimum Split (s)	10	36.9	20	40	10	36.9	20	40	
Yellow Time (s)	4	4.3	4	4.3	4	4.3	4	4.3	
All-Red Time (s)	1	1.6	1	1.7	1	1.6	1	1.7	
Minimum Initial (s)	5	15	15	15	5	15	15	15	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		8		8		8		8	
Flash Dont Walk (s)		23		26		23		26	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	114	0	40	64	114	0	40	64	
End Time (s)	0	40	64	114	0	40	64	114	
Yield/Force Off (s)	135	34.1	59	108	135	34.1	59	108	
Yield/Force Off 170(s)	135	11.1	59	82	135	11.1	59	82	
Local Start Time (s)	114	0	40	64	114	0	40	64	
Local Yield (s)	135	34.1	59	108	135	34.1	59	108	
Local Yield 170(s)	135	11.1	59	82	135	11.1	59	82	
Intersection Summary									
Cycle Length			140						

Cycle Length 140 Control Type Actuated-Coordinated
Natural Cycle 130
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green, Master Intersection

07/03/2018 Synchro 10 Report Page 3 Civtech

Mountain View Medical Center Background AM

2: Tatum Blvd & Shea Blvd HCM 6th Signalized Intersection Summary

	۶	→	\rightarrow	•	←	•	1	†	/	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ሻሻ	ተተተ	7	ሻሻ	ተተተ	7	ሻሻ	↑ ↑₽		ሻሻ	ተተኈ	
Traffic Volume (veh/h)	234	1569	488	330	986	186	286	422	226	226	755	11
Future Volume (veh/h)	234	1569	488	330	986	186	286	422	226	226	755	11
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	260	1743	542	367	1096	207	318	469	251	251	839	130
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	- :
Cap, veh/h	319	1924	597	423	2079	645	373	807	376	370	1055	162
Arrive On Green	0.09	0.38	0.38	0.12	0.41	0.41	0.11	0.24	0.24	0.11	0.24	0.2
Sat Flow, veh/h	3456	5106	1585	3456	5106	1585	3456	3404	1585	3456	4463	688
Grp Volume(v), veh/h	260	1743	542	367	1096	207	318	469	251	251	639	330
Grp Sat Flow(s),veh/h/ln	1728	1702	1585	1728	1702	1585	1728	1702	1585	1728	1702	174
Q Serve(g_s), s	10.3	45.2	45.3	14.6	22.7	12.5	12.7	17.1	20.1	9.8	24.7	24.9
Cycle Q Clear(g_c), s	10.3	45.2	45.3	14.6	22.7	12.5	12.7	17.1	20.1	9.8	24.7	24.9
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.3
Lane Grp Cap(c), veh/h	319	1924	597	423	2079	645	373	807	376	370	804	41
V/C Ratio(X)	0.82	0.91	0.91	0.87	0.53	0.32	0.85	0.58	0.67	0.68	0.79	0.80
Avail Cap(c_a), veh/h	518	1924	597	518	2079	645	469	1070	498	469	1070	549
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.75	0.75	0.7
Uniform Delay (d), s/veh	62.4	41.3	41.3	60.3	31.3	28.3	61.3	47.2	48.4	60.2	50.3	50.3
Incr Delay (d2), s/veh	5.1	7.6	20.0	12.4	1.0	1.3	11.7	0.7	2.1	2.1	2.3	4.
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	8.4	27.6	28.4	11.5	14.6	8.7	10.3	11.8	12.9	7.4	15.5	16.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	67.5	48.9	61.3	72.7	32.3	29.6	73.1	47.9	50.5	62.2	52.6	55.0
LnGrp LOS	E	D	E	E	С	С	E	D	D	E	D	
Approach Vol, veh/h		2545			1670			1038			1220	
Approach Delay, s/veh		53.5			40.8			56.2			55.2	
Approach LOS		D			D			Е			Е	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	22.2	58.6	20.0	39.2	17.9	62.9	20.1	39.1				
Change Period (Y+Rc), s	5.0	* 5.9	5.0	* 6	5.0	* 5.9	5.0	* 6				
Max Green Setting (Gmax), s	21.0	* 34	19.0	* 44	21.0	* 34	19.0	* 44				
Max Q Clear Time (g_c+l1), s	16.6	47.3	11.8	22.1	12.3	24.7	14.7	26.9				
Green Ext Time (p_c), s	0.6	0.0	0.5	5.0	0.6	5.5	0.5	6.2				
Intersection Summary												
HCM 6th Ctrl Delay			51.0									

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

07/03/2018 Synchro 10 Report Civtech Page 4

ntersection													
nt Delay, s/veh	0.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations		4	LDIT	*****	4	W Dit	*	^ ^	HUIT	ODL	444	7	
Fraffic Vol, veh/h	27	0	70	2	0	12	44	852	19	1	1704	94	
uture Vol. veh/h	27	0	70	2	0	12	44	852	19	1	1704	94	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	032	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	Jiop	Stop	None	Jiop	Jiop -	None	1100	-	None	1100	1100	None	
Storage Length		_	IVOITC			- INOTIC	105		INOTIC			150	
eh in Median Storage,	# -	0			0		100	0			0	130	
Grade, %	π -	0			0			0			0		
eak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
leavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Nymt Flow	30	0	78	2	0	13	49	947	21	1	1893	104	
IVIIIL FIOW	30	U	70	2	U	13	49	947	21	- 1	1093	104	
Major/Minor M	linor2		1	/linor1			Major1		٨	Najor2			
Conflicting Flow All	2372	2961	947	1815	3055	484	1997	0	0	968	0	0	
Stage 1	1895	1895	-	1056	1056	-	-	-	-	-	-	-	
Stage 2	477	1066	-	759	1999	-	-		-	-	-	-	
ritical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-	
ritical Hdwy Stg 1	7.34	5.54		7.34	5.54	-	-		-		-	-	
ritical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-		-	-	-		-	
ollow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12		-	3.12		-	
ot Cap-1 Maneuver	*212	*47	*514	*528	37	452	622		_	406	-	_	
Stage 1	*528	*502	-	*182	300	-	-		-	-			
Stage 2	*492	*297		*528	482								
latoon blocked. %	1	1	1	1	1		1						
Nov Cap-1 Maneuver	*193	*43	*514	*421	34	452	622			406			
Nov Cap-1 Maneuver	*193	*43	- 317	*421	34	702	- 022			100			
Stage 1	*486	*502		*168	276								
Stage 2	*440	*274		*448	482								
Jiaye z	440	214		440	402								
	ED			MP			ND			CD			
Approach	EB			WB			NB			SB			
ICM Control Delay, s	19.7			13.3			0.5			0			
ICM LOS	С			В									
linor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		622	-		351	447	406						
ICM Lane V/C Ratio		0.079			0.307	0.035	0.003						
ICM Control Delay (s)		11.3	-	-	19.7	13.3	13.9						
ICM Lane LOS		В			С	В	В						
ICM 95th %tile Q(veh)		0.3	-		1.3	0.1	0						
lotes : Volume exceeds capa			lay exc				putation						in platoon

Intersection													
Int Delay, s/veh	0.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			ተተኈ			ተ ተጉ		
Traffic Vol, veh/h	2	0	2	0	0	27	6	896	9	30	1596	24	
Future Vol, veh/h	2	0	2	0	0	27	6	896	9	30	1596	24	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	50	-	-	0	-	-	
Veh in Median Storage	.,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	2	0	2	0	0	30	7	996	10	33	1773	27	
Major/Minor 1	Minor2		- 1	/linor1		- 1	Major1		- 1	Major2			
Conflicting Flow All	2265	2873	900	1790	2881	503	1800	0	0	1006	0	0	
Stage 1	1853	1853	-	1015	1015	-	1000	-	-	1000	-	-	
Stage 2	412	1020		775	1866								
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34			5.34			
Critical Hdwy Stg 1	7.34	5.54	7.11	7.34	5.54	7.11	0.01			0.01			
Critical Hdwy Stg 2	6.74	5.54		6.74	5.54							_	
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12			3.12			
Pot Cap-1 Maneuver	204	48	*552	*567	47	440	682			389		-	
Stage 1	484	486	-	*194	314	-	-			-			
Stage 2	538	312		*567	476							-	
Platoon blocked, %	1	1	1	1	1		1					-	
Mov Cap-1 Maneuver	177	43	*552	*524	43	440	682			389		-	
Mov Cap-2 Maneuver	177	43		*524	43	-			-		-		
Stage 1	479	445		*192	311		-	-					
Stage 2	496	309		*517	435				-		-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	18.7			13.8			0.1			0.3			
HCM LOS	C			13.0 B			0.1			0.3			
TOW EOS	C												
Minor Long /Major MA		ND	NDT	NDD	EDI41	MDI 4	CDI	CDT	CDD				
Minor Lane/Major Mvm	ll	NBL	NBT	MRK	EBLn1\		SBL	SBT	SBR				
Capacity (veh/h)		682	-	-	268	440	389	-	-				
HCM Cantrol Dalay (a)		0.01	-	-	0.017		0.086	-	-				
HCM Control Delay (s)		10.3	-	-	18.7	13.8	15.1	-	-				
HCM Lane LOS	١	В	-	-	C	В	C	-	-				
HCM 95th %tile Q(veh))	0	-	-	0.1	0.2	0.3	-	-				
Votes													
-: Volume exceeds cap	oacity	\$: De	elay exc	eeds 3	00s	+: Com	putation	Not D	efined	*: All	major v	volume i	n platoon
	pacity	\$: De	elay exc	eeds 3	00s	+: Com	putatior	Not D	efined	*: All	major v	volume i	n platoon

 07/03/2018
 Synchro 10 Report

 Civtech
 Page 5

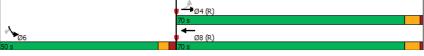
-						
Intersection						
Int Delay, s/veh	0.6					
	EDI	EDD	ND	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			^ ^	^	7
Traffic Vol, veh/h	18	61	16	852	1610	19
Future Vol, veh/h	18	61	16	852	1610	19
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	50	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	20	68	18	947	1789	21
IVIVIII I IUW	20	00	10	771	1707	21
	Minor2	1	Major1	N	Major2	
Conflicting Flow All	2204	895	1810	0	-	0
Stage 1	1789	-	-	-	-	-
Stage 2	415	-	-	-	-	-
Critical Hdwy	6.29	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-		-	
Critical Hdwy Stg 2	6.04	-	-		-	-
Follow-up Hdwy	3.67	3.32	2.22	-		
Pot Cap-1 Maneuver	*368	*407	*608	_	-	-
Stage 1	*368	- 107	- 000			
Stage 2	*600					
Platoon blocked, %	1	1	1			
				-	-	
Mov Cap-1 Maneuver	*357	*407	*608	-	-	-
Mov Cap-2 Maneuver	*326	-	-	-	-	-
Stage 1	*357	-	-	-	-	-
Stage 2	*600	-	-	-	-	-
Approach	EB		NB		SB	
	17.1		0.2		<u> </u>	
HCM Control Delay, s			0.2		U	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		* 608	-	385	-	-
HCM Lane V/C Ratio		0.029		0.228		
HCM Control Delay (s)	1	11.1				
HCM Lane LOS		П.1		17.1 C	- 1	
HCM 95th %tile Q(veh)	١	0.1		0.9		
HOW YOU WILL CALLED)	U. I		0.9		
Notes						
~: Volume exceeds car	pacity	\$: De	elay exc	ceeds 30	00s	+: Com
	,		-, -,			

Intersection						
Intersection Int Delay, s/veh	3.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ની				7
Traffic Vol, veh/h	28	15	25	1	1	1
Future Vol, veh/h	28	15	25	1	1	1
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	2,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	31	17	28	1	1	1
Major/Minor	Major1	ħ	Major2	N	Minor2	
Conflicting Flow All	29	0	viajui 2 -	0	108	29
Stage 1		0	-	-	29	29
	-		-		79	
Stage 2	4.10	-	-	-		
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-		3.518	
Pot Cap-1 Maneuver	1584	-	-	-	889	1046
Stage 1	-	-	-	-	994	-
Stage 2	-	-	-	-	944	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1584	-	-	-	871	1046
Mov Cap-2 Maneuver	-	-	-	-	871	-
Stage 1	-	-	-	-	974	-
Stage 2	-	-	-	-	944	-
, and the second						
Approach	EB		WB		SB	
HCM Control Delay, s	4.8		0		8.4	
HCM LOS	4.0		U		Α.4	
ITCIVI EUS					А	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1584	-	-	-	1046
HCM Lane V/C Ratio		0.02	-	-	-	0.001
HCM Control Delay (s)	1	7.3	0	-	-	8.4
HCM Lane LOS		Α	Α		-	Α
HCM 95th %tile Q(veh)	0.1	-	-	-	0

Mountain View Medical Center Background AM

7: Med. Center Dwy/Albertson's Dwy & Shea Blvd
HCM 6th TWSC

Intersection												
Int Delay, s/veh	0.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተ ተጉ		ች	ተተተ	7			7			7
Traffic Vol, veh/h	56	1992	37	21	1507	34	0	0	14	0	0	35
Future Vol, veh/h	56	1992	37	21	1507	34	0	0	14	0	0	35
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	205	-	-	85	-	150	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	62	2213	41	23	1674	38	0	0	16	0	0	39
Major/Minor M	lajor1		1	Major2		1	Minor1		N	Minor2		
Conflicting Flow All	1712	0	0	2254	0	0	-	-	1127	-	-	837
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	5.34	-	-	5.34	-	-	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.12	-	-	3.12	-	-	-	-	3.92	-	-	3.92
Pot Cap-1 Maneuver	*701	-	-	*552	-	-	0	0	*439	0	0	*558
Stage 1	-	-	-	-	-	-	0	0	-	0	0	-
Stage 2	-	-	-	-	-	-	0	0	-	0	0	-
Platoon blocked, %	1	-	-	1	-	-			1			1
Mov Cap-1 Maneuver	*701	-	-	*552	-	-	-	-	*439	-	-	*558
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			0.2			13.5			11.9		
HCM LOS							В			В		
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBI n1			
Capacity (veh/h)		439	* 701	LDI	LDIN	* 552	-	VVDIX .	558			
HCM Lane V/C Ratio		0.035	0.089			0.042			0.07			
HCM Control Delay (s)		13.5	10.6			11.8			11.9			
HCM Lane LOS		13.3 B	10.0 B			11.0 B			11.9 B			
HCM 95th %tile Q(veh)		0.1	0.3			0.1			0.2			
TIGINI 73011 70011E Q(VEII)		0.1	0.3			0.1		_	0.2			


Synchro 10 Report Page 9 07/03/2018 Civtech

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Mountain View Medical Center Background AM

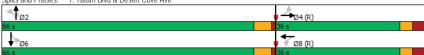
8: Shea Blvd & 50th Street Timing Report, Sorted By Phase

	4	*	•
Phase Number	4	6	8
Movement	EBTL	SBL	WBT
Lead/Lag			
Lead-Lag Optimize			
Recall Mode	C-Max	Max	C-Max
Maximum Split (s)	70	50	70
Maximum Split (%)	58.3%	41.7%	58.3%
Minimum Split (s)	25.3	29.2	25.3
Yellow Time (s)	4.3	3	4.3
All-Red Time (s)	1	2.2	1
Minimum Initial (s)	15	5	15
Vehicle Extension (s)	3	3	3
Minimum Gap (s)	3	3	3
Time Before Reduce (s)	0	0	0
Time To Reduce (s)	0	0	0
Walk Time (s)	8	8	8
Flash Dont Walk (s)	12	16	12
Dual Entry	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes
Start Time (s)	47	117	47
End Time (s)	117	47	117
Yield/Force Off (s)	111.7	41.8	111.7
Yield/Force Off 170(s)	99.7	25.8	99.7
Local Start Time (s)	0	70	0
Local Yield (s)	64.7	114.8	64.7
Local Yield 170(s)	52.7	98.8	52.7
Intersection Summary			
Cycle Length			120
Control Type	Actu	ated-Coo	rdinated
Natural Cycle			75
Offset: 47 (39%), Referen	ced to phase	4:EBTL	and 8:WE
0.111 1.01			
Splits and Phases: 8: S	hea Blvd & 5	0th Stree	et

Synchro 10 Report Page 10 07/03/2018 Civtech

Mountain View Medical Center Background AM

8: Shea Blvd & 50th Street HCM 6th Signalized Intersection Summary


ane Configurations		۶	→	—	•	/	4	
raffic Volume (veh/h)	Movement	EBL	EBT	WBT	WBR	SBL		
uture Volume (veh/h)	Lane Configurations							
nitial Q (Qb), veh	Traffic Volume (veh/h)							
Ped-Bike Adj(A_pbT)	Future Volume (veh/h)							
Parking Bus, Adj		_	0	0		_		
Vork Zone On Ápproach dig Sat Flow, veh/h/ln No No No No No No doing a factor No No No No doing a factor No No No No doing factor 1870 187								
dj Sat Flow, veh/h/In 1870		1.00			1.00		1.00	
dj Flow Rate, veh/h 44 2208 1660 60 84 49 eak Hour Factor 0.90 0.37 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Deal								
Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2								
cap, veh/h 94 2753 1886 68 665 592 curive On Green 0.54 0.54 0.54 0.54 0.37 0.37 axia Flow, veh/h 283 5274 3592 126 1781 1585 sizp Volume(y), veh/h 44 2208 840 880 84 49 sizp Sat Flow(s), veh/h/n 283 1702 1777 1848 1781 1585 Serve(g_s), s 14.4 42.1 49.6 50.3 3.7 2.4 Sycle Q Clear(g_c), s 64.7 42.1 49.6 50.3 3.7 2.4 Sycle Q Clear(g_c), seh/h 94 2753 958 996 665 592 VC Ratio(X) 0.47 0.80 0.88 0.88 0.13 0.08 Vasil Cap(c_a), veh/h 94 2753 958 996 665 592 VCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
rrive On Green								
Rat Flow, veh/h 283 5274 3592 126 1781 1585 Sirp Volume(v), veh/h 44 2208 840 880 84 49 sip Sat Flow(s), veh/h/ln 283 1702 1777 1848 1781 1585 2 Serve(g_s), s 14.4 42.1 49.6 50.3 3.7 2.4 4 ycle Q Clear(g_c), s 64.7 42.1 49.6 50.3 3.7 2.4 4 rop In Lane 1.00 0.07 1.00 1.00 1.00 1.00 ane Grp Cap(c), veh/h 94 2753 958 996 665 592 ICM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Inform Delay (d), sveh 54.4 22.4 24.2 24.3 24.7 24.3 Inter Delay (d2), sveh 15.8 2.6 11.1 11.3 0.4 0.3 Initial O Delay(d3), sveh 0.0 0.0 0.0 0.0 0.0								
Gry Volume(v), veh/h 44 2208 840 880 84 49 Sip Sat Flow(s), veh/h/ln 283 1702 1777 1848 1781 1585 2 Serve(g_S), s 14.4 42.1 49.6 50.3 3.7 2.4 2 Serve(g_C), s 64.7 42.1 49.6 50.3 3.7 2.4 4 rop In Lane 1.00 0.07 1.00 1.00 1.00 1.00 1.00 ane Grp Cap(c), veh/h 94 2753 958 996 665 592 ICCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Inform Delay (d), sveh 54.4 22.4 24.2 24.3 24.7 24.3 ver Delay (d2), sveh 15.8 2.6 11.1 11.3 0.4 0.3 ver Delay (d2), sveh 15.8 2.6 11.1 11.3 0.4 0.3 ver Delay (d2), sveh 15.8 2.6 11.1 11.3								
Strp Sat Flow(s), veh/h/n 283 1702 1777 1848 1781 1585 2 Serve(g_s), s 14.4 42.1 49.6 50.3 3.7 2.4 2 Serve(g_s), s 14.4 42.1 49.6 50.3 3.7 2.4 2 Stycle Q Clear(g_c), s 64.7 42.1 49.6 50.3 3.7 2.4 3 Trop In Lane 1.00 1.00 0.07 1.00								
2 Serve(g_s), s	Grp Volume(v), veh/h							
Cycle Q Clear(g_c), s 64.7 42.1 49.6 50.3 3.7 2.4 Arop In Lane 1.00 0.07 1.00 1.00 Arop In Lane 1.00 0.07 1.00 1.00 Arop In Lane 1.00 0.80 0.88 996 665 592 Arop In Lane 0.47 0.80 0.88 0.88 0.13 0.08 Avail Cap(c_a), veh/h 94 2753 958 996 665 592 ICM Platoon Ratio 1.00								
1.00								
ane Grp Cap(c), veh/h 94 2753 958 996 665 592 //C Ratio(X) 0.47 0.80 0.88 0.88 0.13 0.08 vxiii Cap(c_a), veh/h 94 2753 958 996 665 592 ICM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 plastream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 plastream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 plastream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 plastream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 plastream Filter II 1.00 1.00 1.00 1.00 1.00 1.00 1.00 plastream Filter II 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1			42.1	49.6				
VC Ratio(X)								
avail Cap(C_a), veh/h 94 2753 958 996 665 592 ICM Platoon Ratio 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0								
CM Platoon Ratio 1.00 1.								
Instream Filter(I)								
Inform Delay (d), s/veh 54.4 22.4 24.2 24.3 24.7 24.3 24.7 cr Delay (d2), s/veh 15.8 2.6 11.1 11.3 0.4 0.3 and initial O Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 idile BackOfQ(95%), veh/ln 3.2 23.6 30.7 32.2 3.0 1.7 lnsig. Movement Delay, s/veh nGrp Delay(d), s/veh 70.2 25.0 35.3 35.6 25.1 24.6 nGrp LOS E C D D C C ppproach Vol, veh/h 2252 1720 133 ppproach Vol, veh/h 2252 1720 133 ppproach LOS C D C inter - Assigned Phs 4 6 etc. D C inter - Assigned Phs 4 6 etc. D C C inter - Assigned Phs 4 6 etc. D C C inter - Assigned Phs 4 6 etc. D C C inter - Assigned Phs 4 6 etc. D C C inter - Assigned Phs 4 6 etc. D C C inter - Assigned Phs 4 6 etc. D C C inter - Assigned Phs 4 6 etc. D C C inter - Assigned Phs 4 6 etc. D C C inter - Assigned Phs 4 6 etc. D C C inter - Assigned Phs 4 6 etc. D C C inter - Assigned Phs 4 6 etc. D C C inter - Assigned Phs 6 etc. D C C C C inter - Assigned Phs 6 etc. D C C inter - Assigned Phs 6 etc. D C C inter - Assigned Phs 6 etc. D C C inter - Assigned Phs 6 etc. D C C inter - Assigned Phs 6 etc. D C C inter - Assigned Phs 6 etc. D C C inter - Assigned Phs 6 etc. D C C inter - Assigned Phs 6 etc. D C C inter - Assigned Phs 6 etc. D C C inter - As								
15.8								
nitial O Delay(d3),s/veh 0.0 1.7 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Kile BackOfO(95%),veh/ln 3.2 23.6 30.7 32.2 3.0 1.7 Insig, Movement Delay, s/veh no. 3.2 25.0 35.3 35.6 25.1 24.6 no. no. E C D D C C approach Vol, veh/h 2252 1720 133 approach Delay, s/veh 25.9 35.5 24.9 approach LOS C D C inter - Assigned Phs 4 6 inter - Assigned Priod (Y+RC), s 70.0 50.0 change Period (Y+RC), s 5.3 5.2 dax Green Settling (Gmax), s 64.7 44.8 dax O Clear Time (g_c+11), s 66.7 5.7 sireen Ext Time (p_c, s) 0.0 0.4								
Insig. Movement Delay, s/veh InCrp Delay(d),s/veh InCrp Delay(d) InCr								
nGrp Delay(d),s/veh 70.2 25.0 35.3 35.6 25.1 24.6 nGrp LOS E C D D C C c pproach Vol, veh/h 2252 1720 133 pproach Delay, s/veh 25.9 35.5 24.9 pproach LOS C D C C c pproach LOS C D C D C C c pproach LOS C D C D C C c pproach LOS C D C D C C c pproach LOS C D C D C C c pproach LOS C D C D C C c pproach LOS C D C D C C C pproach LOS C D C D C D C D C D C D C D C D C D C		3.2	23.6	30.7	32.2	3.0	1./	
nGrp LOS E C D D C C pproach Vol, veh/h 2252 1720 133 pproach Delay, s/veh 25,9 35.5 24,9 pproach LOS C D C imer - Assigned Phs 4 6 hs Duration (G+Y+Rc), s 70.0 50.0 change Period (Y+Rc), s 5.3 5.2 lax Green Setting (Gmax), s 64.7 44.8 dax O Clear Time (g_c+11), s 66.7 5.7 sireen Ext Time (p_c), s 0.0 0.4 ntersection Summary 29.9		70.2	25.0	25.2	25 /	25.4	247	
pproach Vol, veh/h 2252 1720 133 pproach Delay, s/veh 25.9 35.5 24.9 pproach LOS C D C imer - Assigned Phs 4 6 ths Duration (G+Y+Rc), s 70.0 50.0 thange Period (Y+Rc), s 5.3 5.2 thange Period (Y+Rc), s 64.7 44.8 tax Green Setting (Gmax), s 64.7 44.8 tax C Clear Time (g_c-I1), s 66.7 5.7 Green Ext Time (p_c), s 0.0 0.4 thersection Summary ICM 6th Ctrl Delay 29.9								
pproach Delay, s/veh 25.9 35.5 24.9 pproach LOS C D C imer - Assigned Phs 4 6 ths Duration (G+Y+Rc), s 70.0 50.0 change Period (Y+Rc), s 5.3 5.2 thange Period (Y+Rc), s 64.7 44.8 tax Green Setting (Gmax), s 64.7 5.7 screen Ext Time (g_c+I1), s 66.7 5.7 screen Ext Time (g_c-c), s 0.0 0.4 thersection Summary ICM 6th Ctrl Delay 29.9		E			D		C	_
pproach LOS C D C imer - Assigned Phs 4 6 th S Duration (G+Y+Rc), s 70.0 50.0 thange Period (Y+Rc), s 5.3 5.2 thange Period (Y+Rc), s 64.7 44.8 thax Green Setting (Gmax), s 64.7 5.7 there Ext Time (g_c+11), s 66.7 5.7 there Ext Time (p_c), s 0.0 0.4 theresection Summary ICM 6th Ctrl Delay 29.9								
imer - Assigned Phs 4 6 rhs Duration (G+Y+Rc), s 70.0 50.0 change Period (Y+Rc), s 5.3 5.2 lax Green Setting (Gmax), s 64.7 44.8 dax Q Clear Time (g_c+I1), s 66.7 5.7 sireen Ext Time (p_c), s 0.0 0.4 ntersection Summary 29.9								
ths Duration (G+Y+Rc), s 70.0 50.0 thange Period (Y+Rc), s 5.3 5.2 thax Green Setting (Gmax), s 64.7 44.8 tax O Clear Time (g_c+II), s 66.7 5.7 Green Ext Time (p_c), s 0.0 0.4 thersection Summary ICM 6th Ctrl Delay 29.9	Approach LOS		С	D		С		
change Period (Y+Rc), s 5.3 5.2 dax Green Setting (Gmax), s 64.7 44.8 dax Q Clear Time (g_c+I1), s 66.7 5.7 streen Ext Time (p_c), s 0.0 0.4 entersection Summary ICM 6th Ctrl Delay 29.9	Timer - Assigned Phs				4		6	
flax Green Setting (Gmax), s 64.7 44.8 flax Q Clear Time (g_c+11), s 66.7 5.7 freen Ext Time (p_c), s 0.0 0.4 ntersection Summary 29.9	Phs Duration (G+Y+Rc), s				70.0		50.0	
Max Q Clear Time (g_c+11), s 66.7 5.7 Green Ext Time (p_c), s 0.0 0.4 Intersection Summary 29.9	Change Period (Y+Rc), s				5.3		5.2	
Green Ext Time (p_c), s	Max Green Setting (Gmax), s				64.7		44.8	
ntersection Summary ICM 6th Ctrl Delay 29.9	Max Q Clear Time (g_c+l1), s				66.7		5.7	
ICM 6th Ctrl Delay 29.9	Green Ext Time (p_c), s				0.0		0.4	
ICM 6th Ctrl Delay 29.9	Intersection Summary							
				29.9				
	HCM 6th LOS			C				

Mountain View Medical Center Background PM

1: Tatum Blvd & Desert Cove Ave Timing Report, Sorted By Phase

	- *\$	4	→	4
Phase Number	2	4	6	8
Movement	NBTL	EBTL	SBTL	WBTL
Lead/Lag				
Lead-Lag Optimize				
Recall Mode	None	C-Max	None	C-Max
Maximum Split (s)	66	36	66	36
Maximum Split (%)	64.7%	35.3%	64.7%	35.3%
Minimum Split (s)	25.3	35	25.3	35
Yellow Time (s)	4.3	3	4.3	3
All-Red Time (s)	1	3	1	3
Minimum Initial (s)	15	4	15	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	8	7	8	7
Flash Dont Walk (s)	12	22	12	22
Dual Entry	Yes	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	86	50	86	50
End Time (s)	50	86	50	86
Yield/Force Off (s)	44.7	80	44.7	80
Yield/Force Off 170(s)	32.7	58	32.7	58
Local Start Time (s)	36	0	36	0
Local Yield (s)	96.7	30	96.7	30
Local Yield 170(s)	84.7	8	84.7	8
Intersection Summary				
Cycle Length			102	
Control Type	Actu	ated-Coo	rdinated	
Natural Cycle			150	
Offset: 50 (49%), Reference	ed to phase	4:EBTL	and 8:WE	BTL, Start
	,			

Splits and Phases: 1: Tatum Blvd & Desert Cove Ave

 07/03/2018
 Synchro 10 Report

 Civtech
 Page 1

Mountain View Medical Center Background PM

1: Tatum Blvd & Desert Cove Ave HCM 6th Signalized Intersection Summary

	ၨ	→	•	•	•	•	1	†	<i>></i>	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4		ሻ	ተተተ	7	ሻ	↑ ↑₽	
Traffic Volume (veh/h)	28	1	28	77	1	100	10	1721	41	113	1277	2
Future Volume (veh/h)	28	1	28	77	1	100	10	1721	41	113	1277	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	31	1	31	86	1	111	11	1912	46	126	1419	2
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	243	24	208	225	21	249	239	3039	943	150	3134	4
Arrive On Green	0.29	0.29	0.29	0.29	0.29	0.29	0.60	0.60	0.60	0.60	0.60	0.60
Sat Flow, veh/h	647	81	706	592	72	847	378	5106	1585	224	5266	7
Grp Volume(v), veh/h	63	0	0	198	0	0	11	1912	46	126	917	504
Grp Sat Flow(s),veh/h/ln	1434	0	0	1510	0	0	378	1702	1585	224	1702	1869
Q Serve(g_s), s	0.0	0.0	0.0	7.6	0.0	0.0	1.7	24.7	1.2	36.0	15.2	15.2
Cycle Q Clear(g_c), s	2.9	0.0	0.0	10.5	0.0	0.0	16.9	24.7	1.2	60.7	15.2	15.2
Prop In Lane	0.49		0.49	0.43		0.56	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	474	0	0	495	0	0	239	3039	943	150	2026	1112
V/C Ratio(X)	0.13	0.00	0.00	0.40	0.00	0.00	0.05	0.63	0.05	0.84	0.45	0.45
Avail Cap(c_a), veh/h	474	0	0	495	0	0	239	3039	943	150	2026	1112
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	0.34	0.34	0.34	1.00	1.00	1.00
Uniform Delay (d), s/veh	26.4	0.0	0.0	29.0	0.0	0.0	16.1	13.4	8.6	39.7	11.4	11.4
Incr Delay (d2), s/veh	0.6	0.0	0.0	2.4	0.0	0.0	0.0	0.1	0.0	32.9	0.2	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	2.2	0.0	0.0	7.6	0.0	0.0	0.3	11.6	0.7	8.1	9.2	10.0
Unsig. Movement Delay, s/veh			0.5	04.1	0.5		415	40.5	0.4	70 (44.	
LnGrp Delay(d),s/veh	27.0	0.0	0.0	31.4	0.0	0.0	16.2	13.5	8.6	72.6	11.6	11.3
LnGrp LOS	С	A	A	С	A	A	В	В	A	E	В	E
Approach Vol, veh/h		63			198			1969			1547	
Approach Delay, s/veh		27.0			31.4			13.4			16.6	
Approach LOS		С			С			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		66.0		36.0		66.0		36.0				
Change Period (Y+Rc), s		5.3		6.0		5.3		6.0				
Max Green Setting (Gmax), s		60.7		30.0		60.7		30.0				
Max Q Clear Time (g_c+I1), s		26.7		4.9		62.7		12.5				
Green Ext Time (p_c), s		20.9		0.3		0.0		1.0				
Intersection Summary												
HCM 6th Ctrl Delay			15.9									
HCM 6th LOS			В									

Mountain View Medical Center Background PM

2: Tatum Blvd & Shea Blvd Timing Report, Sorted By Phase

	•	*	-	Ť	•	4-	1	¥	
Phase Number	1	2	3	4	5	6	7	8	
Movement	WBL	EBT	SBL	NBT	EBL	WBT	NBL	SBT	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	None	None	C-Max	None	None	None	C-Max	
Maximum Split (s)	26	45	29	50	26	45	29	50	
Maximum Split (%)	17.3%	30.0%	19.3%	33.3%	17.3%	30.0%	19.3%	33.3%	
Minimum Split (s)	10	36.9	20	40	10	36.9	20	40	
Yellow Time (s)	4	4.3	4	4.3	4	4.3	4	4.3	
All-Red Time (s)	1	1.6	1	1.7	1	1.6	1	1.7	
Minimum Initial (s)	5	15	15	15	5	15	15	15	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		8		8		8		8	
Flash Dont Walk (s)		23		26		23		26	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	105	131	26	55	105	131	26	55	
End Time (s)	131	26	55	105	131	26	55	105	
Yield/Force Off (s)	126	20.1	50	99	126	20.1	50	99	
Yield/Force Off 170(s)	126	147.1	50	73	126	147.1	50	73	
Local Start Time (s)	50	76	121	0	50	76	121	0	
Local Yield (s)	71	115.1	145	44	71	115.1	145	44	
Local Yield 170(s)	71	92.1	145	18	71	92.1	145	18	
l . l									

Intersection Summary

Cycle Length 150

Control Type Actuated-Coordinated

Natural Cycle 150

Offset: 55 (37%), Referenced to phase 4:NBT and 8:SBT, Start of Green

07/03/2018 Synchro 10 Report Page 3 Civtech

Mountain View Medical Center Background PM

2: Tatum Blvd & Shea Blvd HCM 6th Signalized Intersection Summary

	۶	→	•	•	←	•	4	1	/	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^	7	1,14	^	7	1,1	↑ ↑₽		1,1	ተተኈ	
Traffic Volume (veh/h)	373	1218	240	198	1572	216	627	1123	270	287	686	287
Future Volume (veh/h)	373	1218	240	198	1572	216	627	1123	270	287	686	287
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	414	1353	267	220	1747	240	697	1248	300	319	762	319
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	459	1605	498	274	1331	413	553	1445	347	376	1064	441
Arrive On Green	0.13	0.31	0.31	0.08	0.26	0.26	0.16	0.35	0.35	0.11	0.30	0.30
Sat Flow, veh/h	3456	5106	1585	3456	5106	1585	3456	4109	987	3456	3541	1469
Grp Volume(v), veh/h	414	1353	267	220	1747	240	697	1034	514	319	732	349
Grp Sat Flow(s),veh/h/ln	1728	1702	1585	1728	1702	1585	1728	1702	1693	1728	1702	1606
Q Serve(g_s), s	17.7	37.1	20.8	9.4	39.1	19.8	24.0	42.4	42.4	13.6	28.8	29.1
Cycle Q Clear(g_c), s	17.7	37.1	20.8	9.4	39.1	19.8	24.0	42.4	42.4	13.6	28.8	29.1
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.58	1.00		0.91
Lane Grp Cap(c), veh/h	459	1605	498	274	1331	413	553	1197	595	376	1023	483
V/C Ratio(X)	0.90	0.84	0.54	0.80	1.31	0.58	1.26	0.86	0.86	0.85	0.72	0.72
Avail Cap(c_a), veh/h	484	1605	498	484	1331	413	553	1197	595	553	1023	483
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	0.88	0.88
Uniform Delay (d), s/veh	64.1	48.0	42.4	67.9	55.5	48.3	63.0	45.3	45.3	65.6	46.8	46.9
Incr Delay (d2), s/veh	19.3	4.3	1.1	5.5	146.1	2.0	131.3	8.4	15.4	7.2	3.8	8.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	14.0	23.0	13.2	7.8	51.4	12.8	31.2	26.5	27.8	10.3	18.3	18.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	83.4	52.2	43.5	73.4	201.6	50.4	194.3	53.7	60.6	72.8	50.6	54.9
LnGrp LOS	F	D	D	E	F	D	F	D	E	E	D	D
Approach Vol, veh/h		2034			2207			2245			1400	
Approach Delay, s/veh		57.4			172.3			98.9			56.7	
Approach LOS		Е			F			F			Е	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	16.9	53.1	21.3	58.7	24.9	45.0	29.0	51.1				
Change Period (Y+Rc), s	5.0	* 5.9	5.0	* 6	5.0	* 5.9	5.0	* 6				
Max Green Setting (Gmax), s	21.0	* 39	24.0	* 44	21.0	* 39	24.0	* 44				
Max Q Clear Time (q_c+l1), s	11.4	39.1	15.6	44.4	19.7	41.1	26.0	31.1				
Green Ext Time (p_c), s	0.5	0.0	0.7	0.0	0.2	0.0	0.0	6.0				
Intersection Summary												
HCM 6th Ctrl Delay			101.3									
HCM 6th LOS			F									

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

07/03/2018 Synchro 10 Report Civtech Page 4

2.6

8

Veh in Median Storage, # - 0 - -

Minor2

8 0 44

Minor1

- None

0

90 90 90 90 90

0 0

0

- None

Intersection Int Delay, s/veh

Movement Lane Configurations

Traffic Vol, veh/h

Future Vol, veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Grade, %

Mvmt Flow

Major/Minor

Conflicting Peds, #/hr

↑ ↑↑

32 1117

0

36 1241

Major2

5

90

3

-													
Intersection													
Int Delay, s/veh	1.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	LDL	1>	LDIN	WDL	4	WDIC	ħ	^ ^	NDIX	JDL	^ ^	7	
Fraffic Vol, veh/h	24	0	126	1	0	63	55	1984	8	2	998	149	
uture Vol, veh/h	24	0	126	1	0	63	55	1984	8	2	998	149	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None		-	None	-		None	
Storage Length	-	-	-				105	-		-		150	
eh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-	
Frade, %	-	0	-	-	0		-	0		-	0	-	
eak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
leavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
1vmt Flow	27	0	140	1	0	70	61	2204	9	2	1109	166	
lajor/Minor N	Minor2		. 1	∕linor1			Major1		N	/lajor2			
Conflicting Flow All	2117	3448	555	2779	3610	1107	1275	0	0	2213	0	0	
Stage 1	1113	1113		2331	2331	-	-	-		-		-	
Stage 2	1004	2335		448	1279		-	-		-		-	
ritical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-	
ritical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-	-	-	
ritical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-	-	-	
ollow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-	
ot Cap-1 Maneuver	*127	*9	*682	*36	6	176	720	-	-	97	-	-	
Stage 1	*700	*666	-	*22	70	-	-	-	-	-	-	-	
Stage 2	*234	*69	-	*700	562	-	-	-	-	-	-	-	
latoon blocked, %	1	1	1	1	1		1	-	-		-	-	
Nov Cap-1 Maneuver	*67	*8	*682	*25	5	176	720	-	-	97	-	-	
Nov Cap-2 Maneuver	*67	*8	-	*25	5	-	-	-	-	-	-	-	
Stage 1	*641	*616	-	*20	64	-	-	-	-	-	-	-	
Stage 2	*129	*63	-	*515	520	-	-	-	-	-	-	-	
pproach	EB			WB			NB			SB			
ICM Control Delay, s	11.6			44			0.3			0.1			
ICM LOS	В			Ε									
/linor Lane/Major Mvm	ıt	NBL	NBT	NBR I	EBLn1\	WBLn1	SBL	SBT	SBR				
Capacity (veh/h)		720	-	-	682	161	97	-	-				
CM Lane V/C Ratio		0.085	-	-	0.205	0.442	0.023	-					
ICM Control Delay (s)		10.5	-	-	11.6	44	43	-	-				
ICM Lane LOS		В	-	-	В	E	Ε	-	-				
HCM 95th %tile Q(veh))	0.3	-	-	0.8	2	0.1	-	-				
Votes													
: Volume exceeds cap	nacity	\$. Do	elay exc	eeds 3	nns	+: Com	nutation	Not D	efined	*· AII	maiory	nlume i	in platoon
. Volume exceeds cal	Jacity	g. De	nay txu	ccus 3	003	i. Culli	patation	I NOLD	CHITCU	. 1411	majul 1	rolullie I	iii piatuutt

Conflicting Flow All	2188	3499	624	2751	3501	1092	1247	0	0	2183	0	0	
Stage 1	1316	1316	-	2182	2182	-	-	-	-	-	-	-	
Stage 2	872	2183	-	569	1319	-	-	-	-	-	-	-	
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-	
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-	
Pot Cap-1 Maneuver	*133	*8	*647	*44	*8	180	*814	-	-	101	-	-	
Stage 1	*664	*632	-	*28	*83	-	-	-	-	-	-	-	
Stage 2	*282	*83	-	*664	*632	-	-	-	-	-	-	-	
Platoon blocked, %	1	1	1	1	1		1	-	-		-	-	
Mov Cap-1 Maneuver	*70	*5	*647	*26	*5	180	*814	-	-	101		-	
Mov Cap-2 Maneuver	*70	*5	-	*26	*5	-	-	-	-	-	-	-	
Stage 1	*664	*407	-	*28	*83	-	-	-	-	-	-	-	
Stage 2	*205	*83	-	*425	*407	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	155.3			91.2			0			1.6			
HCM LOS	F			F									
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		* 814	-	-	35	94	101	-	-				
HCM Lane V/C Ratio		-	-	-	0.349	0.615	0.352	-	-				
HCM Control Delay (s)		0	-	-	155.3	91.2	58.9	-	-				
HCM Lane LOS		Α	-	-	F	F	F	-	-				
HCM 95th %tile Q(veh))	0	-	-	1.1	2.9	1.4	-	-				
Notes													
Notes ~: Volume exceeds cap	nacity	\$∙ De	elay exc	eeds 3	ากร	+· Comi	nutation	Not De	ofined	*· ΔII r	naior vol	lume in platoon	

↑ ↑↑

0 1962

0 0

0

90 90

50

90

Major1

0 2180

Stop Stop Stop Stop Stop Free Free Free Free Free Free

2 2

49

 07/03/2018
 Synchro 10 Report

 Civtech
 Page 5

nt Delay, s/veh	0.3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
ane Configurations	Y		٦	^ ^	^	7	
Fraffic Vol, veh/h	16	20	47	2002	1043	64	
uture Vol, veh/h	16	20	47	2002	1043	64	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	50	-	-	-	
/eh in Median Storage,		-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
/Ivmt Flow	18	22	52	2224	1159	71	
	/linor2	1	Major1	N	/lajor2		
Conflicting Flow All	2153	580	1230	0	-	0	
Stage 1	1159		-	-	-	-	
Stage 2	994	-	-	-	-	-	
Critical Hdwy	6.29	6.94	4.14	-	-	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	6.04	-	-	-	-	-	
ollow-up Hdwy	3.67	3.32	2.22	-	-	-	
Pot Cap-1 Maneuver	*299	*639	*956	-	-	-	
Stage 1	*579	-	-	-	-	-	
Stage 2	*294	-	-	-	-	-	
Platoon blocked, %	1	1	1	-	-	-	
Mov Cap-1 Maneuver	*283	*639	*956	-	-	-	
Mov Cap-2 Maneuver	*214	-	-	-	-	-	
Stage 1	*547	-	-	-	-	-	
Stage 2	*294	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	17		0.2		0		
HCM LOS	С						
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR	
Capacity (veh/h)		* 956		339	-	-	
HCM Lane V/C Ratio		0.055		0.118			
HCM Control Delay (s)		9	-	17	-	-	
HCM Lane LOS		Á		C	-	-	
HCM 95th %tile Q(veh)		0.2	-	0.4			

Intersection						
Int Delay, s/veh	4.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ની				7
Traffic Vol, veh/h	12	27	19	2	1	37
Future Vol, veh/h	12	27	19	2	1	37
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	
Storage Length		-		-		0
Veh in Median Storage	2.# -	0	0		0	-
Grade, %	-	0	0		0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	13	30	21	2	1	41
IVIVIIIL FIOW	13	30	21	2	- 1	41
Major/Minor I	Major1	1	Major2	1	Minor2	
Conflicting Flow All	23	0	-	0	78	22
Stage 1	-	-		-	22	-
Stage 2					56	
Critical Hdwy	4.12			_	6.42	6.22
Critical Hdwy Stg 1	1.12				5.42	0.22
Critical Hdwy Stg 2					5.42	
Follow-up Hdwy	2.218				3.518	
Pot Cap-1 Maneuver	1592				925	1055
	1592			-	1001	1000
Stage 1		-	-	-		-
Stage 2	-	-	-	-	967	-
Platoon blocked, %	4500	-	-	-	040	4055
Mov Cap-1 Maneuver	1592	-	-	-	918	1055
Mov Cap-2 Maneuver	-	-	-	-	918	-
Stage 1	-	-	-	-	993	-
Stage 2	-	-	-	-	967	-
Approach	EB		WB		SB	
HCM Control Delay, s	2.2		0		8.6	
	2.2		U			
HCM LOS					Α	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1592	-		-	1055
HCM Lane V/C Ratio		0.008				0.039
HCM Control Delay (s)		7.3	0		-	8.6
HCM Lane LOS		7.3 A	A			ο.ο
	١	0	Α -			0.1
HCM 95th %tile Q(veh))	U				U. I

Mountain View Medical Center Background PM

7: Med. Center Dwy/Albertson's Dwy & Shea Blvd
HCM 6th TWSC

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	ተ ተጮ		7	^ ^	7			7			7
Traffic Vol, veh/h	41	1686	14	9	1962	91	0	0	29	0	0	56
Future Vol, veh/h	41	1686	14	9	1962	91	0	0	29	0	0	56
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	205	-	-	85	-	150	-	-	0	-	-	0
Veh in Median Storag	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	46	1873	16	10	2180	101	0	0	32	0	0	62
Major/Minor	Major1		N	/lajor2		N	/linor1			/linor2		
Conflicting Flow All	2281	0	0	1889	0	0	-	-	945	-	-	1090
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	5.34	-	-	5.34	-	-	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.12	-	-	3.12	-	-	-	-	3.92	-	-	3.92
Pot Cap-1 Maneuver	*563	-	-	142	-	-	0	0	226	0	0	*447
Stage 1	-	-	-	-	-	-	0	0	-	0	0	-
Stage 2	-	-	-	-	-	-	0	0	-	0	0	-

Critical Hdwy Stg 2 -	Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	
Pot Cap-1 Maneuver *563 - 142 - 0 0 226 0 0 *447 Stage 1 - - - - 0 0 - 0 0 - Stage 2 - - - - 0 0 - 0 0 - Platoon blocked, % 1 - - - 1 Mov Cap-1 Maneuver *563 - 142 - - 226 - *447 Mov Cap-2 Maneuver - - - - - - - - - Stage 1 - - - - - - - - -	Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1 - - - - 0 0 - 0 0 - 0 0 - </td <td>Follow-up Hdwy</td> <td>3.12</td> <td>-</td> <td>-</td> <td>3.12</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>3.92</td> <td>-</td> <td>-</td> <td>3.92</td> <td></td>	Follow-up Hdwy	3.12	-	-	3.12	-	-	-	-	3.92	-	-	3.92	
Stage 2 - - - 0 0 - 0 Platoon blocked, % 1 - - - 1 Mov Cap-1 Maneuver *563 - 142 - - 226 - *447 Mov Cap-2 Maneuver - - - - - - - - - Stage 1 - - - - - - - - -	Pot Cap-1 Maneuver	*563	-	-	142	-	-	0	0	226	0	0	*447	
Platoon blocked, % 1 1 Mov Cap-1 Maneuver *563 142 226 - *447 Mov Cap-2 Maneuver	Stage 1	-	-	-	-	-	-	0	0	-	0	0	-	
Mov Cap-1 Maneuver *563 - 142 226 - *447 Mov Cap-2 Maneuver	Stage 2	-	-	-	-	-	-	0	0	-	0	0	-	
Mov Cap-2 Maneuver	Platoon blocked, %	1	-	-		-	-						1	
Stage 1	Mov Cap-1 Maneuver	*563	-	-	142	-	-	-	-	226	-	-	*447	
	Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
	Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0.3	0.1	23.6	14.4	
HCM LOS			С	В	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBI	Ln1
Capacity (veh/h)	226	* 563	-	-	142	-	- 4	447
HCM Lane V/C Ratio	0.143	0.081	-	-	0.07	-	- 0.	139
HCM Control Delay (s)	23.6	12	-	-	32.3	-	- 1	14.4
HCM Lane LOS	С	В	-	-	D	-	-	В
HCM 95th %tile Q(veh)	0.5	0.3	-	-	0.2	-	-	0.5
Netes								

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

 07/03/2018
 Synchro 10 Report

 Civtech
 Page 9

Mountain View Medical Center Background PM

8: Shea Blvd & 50th Street Timing Report, Sorted By Phase

	4	4	—
Phase Number	4	6	8
Movement	EBTL	SBL	WBT
Lead/Lag			
Lead-Lag Optimize			
Recall Mode	C-Max	Max	C-Max
Maximum Split (s)	70	50	70
Maximum Split (%)	58.3%	41.7%	58.3%
Minimum Split (s)	25.3	29.2	25.3
Yellow Time (s)	4.3	3	4.3
All-Red Time (s)	1	2.2	1
Minimum Initial (s)	15	5	15
Vehicle Extension (s)	3	3	3
Minimum Gap (s)	3	3	3
Time Before Reduce (s)	0	0	0
Time To Reduce (s)	0	0	0
Walk Time (s)	8	8	8
Flash Dont Walk (s)	12	16	12
Dual Entry	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes
Start Time (s)	3	73	3
End Time (s)	73	3	73
Yield/Force Off (s)	67.7	117.8	67.7
Yield/Force Off 170(s)	55.7	101.8	55.7
Local Start Time (s)	0	70	0
Local Yield (s)	64.7	114.8	64.7
Local Yield 170(s)	52.7	98.8	52.7
Intersection Summary			
Cycle Length			120
Control Type	Actu	ated-Coo	
Natural Cycle			100
Offset: 3 (3%), Referenced	to phase 4	:EBTL an	nd 8:WBT,
Splits and Phases: 8: Sh	iea Blvd & 5	0th Stree	et

Mountain View Medical Center Background PM

8: Shea Blvd & 50th Street HCM 6th Signalized Intersection Summary

	•	→	—	4	\	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	^	ΦÞ		*	7	
Traffic Volume (veh/h)	59	1692	2036	50	145	73	
Future Volume (veh/h)	59	1692	2036	50	145	73	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	66	1880	2262	56	161	81	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	60	2753	1911	47	665	592	
Arrive On Green	0.54	0.54	0.54	0.54	0.37	0.37	
Sat Flow, veh/h	157	5274	3638	87	1781	1585	
Grp Volume(v), veh/h	66	1880	1129	1189	161	81	
Grp Sat Flow(s), veh/h/ln	157	1702	1777	1855	1781	1585	
Q Serve(g_s), s	0.0	32.2	64.7	64.7	7.5	4.0	
Cycle Q Clear(g_c), s	64.7	32.2	64.7	64.7	7.5	4.0	
Prop In Lane	1.00	0750	050	0.05	1.00	1.00	
Lane Grp Cap(c), veh/h	60	2753	958	1000	665	592	
V/C Ratio(X)	1.10	0.68	1.18	1.19	0.24	0.14	
Avail Cap(c_a), veh/h	60	2753	958	1000	665	592	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	60.0	20.2	27.6 91.4	27.7 95.1	25.9 0.9	24.8 0.5	
Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh	146.4 0.0	1.4	0.0	95.1	0.9	0.0	
%ile BackOfQ(95%),veh/ln	7.7	18.6	70.2	74.8	6.0	2.9	
		18.6	70.2	74.8	0.0	2.9	
Unsig. Movement Delay, s/ve LnGrp Delay(d),s/veh	en 206.4	21.6	119.0	122.7	26.8	25.3	
LnGrp LOS	206.4 F	21.6 C	119.0 F	122. <i>1</i>	26.8 C	25.3 C	
Approach Vol, veh/h		1946	2318		242	C	
Approach Vol, ven/n Approach Delay, s/veh		27.8	120.9		26.3		
					20.3 C		
Approach LOS		С	F		C		
Timer - Assigned Phs				4		6	
Phs Duration (G+Y+Rc), s				70.0		50.0	
Change Period (Y+Rc), s				5.3		5.2	
Max Green Setting (Gmax), s				64.7		44.8	
Max Q Clear Time (g_c+I1), s	S			66.7		9.5	
Green Ext Time (p_c), s				0.0		0.7	
Intersection Summary							
HCM 6th Ctrl Delay			75.6				
HCM 6th LOS			E				

Mountain View Medical Center Total AM

1: Tatum Blvd & Desert Cove Ave Timing Report, Sorted By Phase

	- ₹	4	- ₽>	4
Phase Number	2	4	6	8
Movement	NBTL	EBTL	SBTL	WBTL
Lead/Lag				
Lead-Lag Optimize				
Recall Mode	None	C-Max	None	C-Max
Maximum Split (s)	66	36	66	36
Maximum Split (%)	64.7%	35.3%	64.7%	35.3%
Minimum Split (s)	25.3	35	25.3	35
Yellow Time (s)	4.3	3	4.3	3
All-Red Time (s)	1	3	1	3
Minimum Initial (s)	15	4	15	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	8	7	8	7
Flash Dont Walk (s)	12	22	12	22
Dual Entry	Yes	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	55	19	55	19
End Time (s)	19	55	19	55
Yield/Force Off (s)	13.7	49	13.7	49
Yield/Force Off 170(s)	1.7	27	1.7	27
Local Start Time (s)	36	0	36	0
Local Yield (s)	96.7	30	96.7	30
Local Yield 170(s)	84.7	8	84.7	8
Intersection Summary				
Cycle Length			102	
Control Type	Actu	ated-Coo	rdinated	
Natural Cycle			65	
Offset: 19 (19%), Reference	ed to phase	4:EBTL	and 8:WI	BTL, Start

Splits and Phases: 1: Tatum Blvd & Desert Cove Ave

 07/03/2018
 Synchro 10 Report

 Civtech
 Page 1

Mountain View Medical Center Total AM

1: Tatum Blvd & Desert Cove Ave HCM 6th Signalized Intersection Summary

	۶	→	\rightarrow	•	←	•	1	†	/	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			ተተተ	7		↑ ↑↑	
Traffic Volume (veh/h)	9	0	5	20	0	50	30	840	37	87	1118	10
Future Volume (veh/h)	9	0	5	20	0	50	30	840	37	87	1118	10
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	10	0	6	22	0	56	33	933	41	97	1242	11
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	475	13	259	230	23	528	172	2107	654	233	2154	19
Arrive On Green	0.48	0.00	0.48	0.48	0.00	0.48	0.41	0.41	0.41	0.41	0.41	0.41
Sat Flow, veh/h	877	27	543	387	49	1109	443	5106	1585	577	5220	46
Grp Volume(v), veh/h	16	0	0	78	0	0	33	933	41	97	810	443
Grp Sat Flow(s),veh/h/ln	1447	0	0	1544	0	0	443	1702	1585	577	1702	1862
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	0.0	6.3	13.4	1.6	14.8	18.7	18.7
Cycle Q Clear(g_c), s	0.5	0.0	0.0	2.6	0.0	0.0	25.0	13.4	1.6	28.2	18.7	18.7
Prop In Lane	0.62		0.37	0.28		0.72	1.00		1.00	1.00		0.02
Lane Grp Cap(c), veh/h	747	0	0	781	0	0	172	2107	654	233	1405	769
V/C Ratio(X)	0.02	0.00	0.00	0.10	0.00	0.00	0.19	0.44	0.06	0.42	0.58	0.58
Avail Cap(c_a), veh/h	747	0	0	781	0	0	253	3039	943	338	2026	1108
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	0.84	0.84	0.84	1.00	1.00	1.00
Uniform Delay (d), s/veh	14.1	0.0	0.0	14.7	0.0	0.0	32.7	21.5	18.1	31.7	23.1	23.1
Incr Delay (d2), s/veh	0.1	0.0	0.0	0.3	0.0	0.0	0.4	0.1	0.0	1.2	0.4	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.4	0.0	0.0	1.9	0.0	0.0	1.3	8.7	1.1	3.8	11.8	12.8
Unsig. Movement Delay, s/veh		0.0	0.0	146	0.0	0.0	20.0	04 (10.1	20.6	00.5	00.0
LnGrp Delay(d),s/veh	14.2	0.0	0.0	14.9	0.0	0.0	33.2	21.6	18.1	32.8	23.5	23.8
LnGrp LOS	В	A	A	В	A 70	A	С	C	В	С	C	C
Approach Vol, veh/h		16			78			1007			1350	
Approach Delay, s/veh		14.2			14.9			21.9			24.2	
Approach LOS		В			В			С			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		47.4		54.6		47.4		54.6				
Change Period (Y+Rc), s		5.3		6.0		5.3		6.0				
Max Green Setting (Gmax), s		60.7		30.0		60.7		30.0				
Max Q Clear Time (g_c+l1), s		27.0		2.5		30.2		4.6				
Green Ext Time (p_c), s		8.7		0.0		11.9		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			22.9									
HCM 6th LOS			С									


Mountain View Medical Center Total AM

2: Tatum Blvd & Shea Blvd Timing Report, Sorted By Phase

	•	*	-	Ť	•	42	1	†	
Phase Number	1	2	3	4	5	6	7	8	J
Movement	WBL	EBT	SBL	NBT	EBL	WBT	NBL	SBT	_
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	j
Lead-Lag Optimize	Yes	;							
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	26	40	24	50	26	40	24	50)
Maximum Split (%)	18.6%	28.6%	17.1%	35.7%	18.6%	28.6%	17.1%	35.7%	,
Minimum Split (s)	10	36.9	20	40	10	36.9	20	40	
Yellow Time (s)	4	4.3	4	4.3	4	4.3	4	4.3	1
All-Red Time (s)	1	1.6	1	1.7	1	1.6	1	1.7	1
Minimum Initial (s)	5	15	15	15	5	15	15	15	j
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	1
Time Before Reduce (s)	0	0	0	0	0	0	0	0)
Time To Reduce (s)	0	0	0	0	0	0	0	0)
Walk Time (s)		8		8		8		8	1
Flash Dont Walk (s)		23		26		23		26)
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	i
Inhibit Max	Yes	i							
Start Time (s)	114	0	40	64	114	0	40	64	
End Time (s)	0	40	64	114	0	40	64	114	
Yield/Force Off (s)	135	34.1	59	108	135	34.1	59	108	
Yield/Force Off 170(s)	135	11.1	59	82	135	11.1	59	82	!
Local Start Time (s)	114	0	40	64	114	0	40	64	
Local Yield (s)	135	34.1	59	108	135	34.1	59	108	
Local Yield 170(s)	135	11.1	59	82	135	11.1	59	82	
Intersection Summary									

Cycle Length Control Type Actuated-Coordinated
Natural Cycle 130
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green, Master Intersection

Synchro 10 Report Page 3 07/03/2018 Civtech

Mountain View Medical Center Total AM

2: Tatum Blvd & Shea Blvd HCM 6th Signalized Intersection Summary

	۶	→	•	•	-	•	•	†	~	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	^	7	ሻሻ	^	7	1,4	↑ ↑₽		1,1	ተተp	
Traffic Volume (veh/h)	234	1586	492	330	986	186	292	424	226	229	758	117
Future Volume (veh/h)	234	1586	492	330	986	186	292	424	226	229	758	117
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	260	1762	547	367	1096	207	324	471	251	254	842	130
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	319	1912	594	423	2067	642	379	815	379	370	1058	162
Arrive On Green	0.09	0.37	0.37	0.12	0.40	0.40	0.11	0.24	0.24	0.11	0.24	0.24
Sat Flow, veh/h	3456	5106	1585	3456	5106	1585	3456	3404	1585	3456	4465	686
Grp Volume(v), veh/h	260	1762	547	367	1096	207	324	471	251	254	641	331
Grp Sat Flow(s),veh/h/ln	1728	1702	1585	1728	1702	1585	1728	1702	1585	1728	1702	1747
Q Serve(g_s), s	10.3	46.1	46.1	14.6	22.8	12.5	12.9	17.1	20.0	9.9	24.8	25.0
Cycle Q Clear(g_c), s	10.3	46.1	46.1	14.6	22.8	12.5	12.9	17.1	20.0	9.9	24.8	25.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.39
Lane Grp Cap(c), veh/h	319	1912	594	423	2067	642	379	815	379	370	806	414
V/C Ratio(X)	0.82	0.92	0.92	0.87	0.53	0.32	0.86	0.58	0.66	0.69	0.79	0.80
Avail Cap(c_a), veh/h	518	1912	594	518	2067	642	469	1070	498	469	1070	549
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.74	0.74	0.74
Uniform Delay (d), s/veh	62.4	41.8	41.8	60.3	31.6	28.5	61.2	47.0	48.1	60.2	50.2	50.3
Incr Delay (d2), s/veh	5.1	8.8	21.9	12.4	1.0	1.3	12.2	0.7	2.0	2.2	2.3	4.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	8.4	28.3	29.1	11.5	14.7	8.7	10.4	11.8	12.9	7.5	15.5	16.3
Unsig. Movement Delay, s/veh		F0 /	(0.7	70.7	20.5	20.0	70.4	47.7	F0.0	(0.4	F0 F	55.0
LnGrp Delay(d),s/veh	67.5 E	50.6 D	63.7 E	72.7 F	32.5 C	29.8 C	73.4 F	47.7 D	50.2 D	62.4 F	52.5 D	
LnGrp LOS	E		E	E		C	E		D	E		D
Approach Vol, veh/h		2569			1670			1046			1226	
Approach Delay, s/veh		55.1			41.0			56.2			55.2	
Approach LOS		Е			D			Е			Е	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	22.2	58.3	20.0	39.5	17.9	62.6	20.3	39.2				
Change Period (Y+Rc), s	5.0	* 5.9	5.0	* 6	5.0	* 5.9	5.0	* 6				
Max Green Setting (Gmax), s	21.0	* 34	19.0	* 44	21.0	* 34	19.0	* 44				
Max Q Clear Time (g_c+I1), s	16.6	48.1	11.9	22.0	12.3	24.8	14.9	27.0				
Green Ext Time (p_c), s	0.6	0.0	0.5	5.0	0.6	5.4	0.5	6.2				
Intersection Summary												
HCM 6th Ctrl Delay			51.7									
HCM 6th LOS			D									

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

07/03/2018 Synchro 10 Report Civtech Page 4

Intersection													
Int Delay, s/veh	0.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	202	4	LDIT	1100	4	W Dit	*	ተተተ	TIDI(ODL	444	7	
Traffic Vol, veh/h	27	0	70	4	0	16	44	856	27	1	1712	94	
Future Vol. veh/h	27	0	70	4	0	16	44	856	27	1	1712	94	
Conflicting Peds, #/hr		0	0	0	0	0	0	0.00	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	Stop	Stop	None	Stop	Stop -	None	-	-	None	1166	1166	None	
Storage Length	-	-	NONE			NUITE -	105		NONE			150	
/eh in Median Storag	ie # -	0			0		103	0			0	130	
Grade, %	C, # - -	0			0			0			0		
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
	2	2	2	2	2	2	2	2	2	2	2	2	
leavy Vehicles, %													
Nymt Flow	30	0	78	4	0	18	49	951	30	1	1902	104	
Major/Minor	Minor2		1	/linor1			Major1		N	/lajor2			
Conflicting Flow All	2382	2983	951	1827	3072	491	2006	0	0	981	0	0	
Stage 1	1904	1904	-	1064	1064	-		-	-	-	-	-	
Stage 2	478	1079		763	2008				-				
ritical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34		-	5.34			
ritical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	7.11	0.01			0.01			
ritical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-			-				
ollow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12			3.12			
ot Cap-1 Maneuver	*207	*44	*514	*528	35	448	611	-		400			
Stage 1	*528	*502	J14 -	*180	298	440	011			400			
Stage 2	*491	*293		*528	475								
Platoon blocked. %	1	1	1	1	1	-	1			-			
Nov Cap-1 Maneuver		*41	*514	*421	33	448	611			400			
Nov Cap-1 Maneuver Nov Cap-2 Maneuver		*41	314	*421	33	440	011	-		400		-	
	*486			*166	274				-	-		-	
Stage 1		*502			475	-							
Stage 2	*434	*270	-	*448	4/5	-		-	-	-	-		
pproach	EB			WB			NB			SB			
ICM Control Delay, s	20			13.6			0.5			0			
ICM LOS	С			В									
		NO	NET	NDE			0.07	0.0.	005				
Minor Lane/Major Mvi	mt	NBL	NBT	NBK I	EBLn1V		SBL	SBT	SBR				
Capacity (veh/h)		611	-	-	346	442	400	-	-				
ICM Lane V/C Ratio		0.08	-	-	0.311	0.05	0.003	-	-				
ICM Control Delay (s	5)	11.4	-	-	20	13.6	14	-	-				
ICM Lane LOS		В	-	-	С	В	В	-	-				
ICM 95th %tile Q(vel	h)	0.3	-	-	1.3	0.2	0	-	-				
lotes													
	nnaoitu	¢. D-	lov or	oodo 2	000	··· Co	nutoti	Not D	ofinad	*. AII	major	rolum -	n ploton-
: Volume exceeds ca	apacity	\$: D6	iay exc	eeds 3	UUS	+: Com	putation	i NOLD	eimed	: All	major v	/olume I	in platoon

Intersection													
nt Delay, s/veh	0.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4		7	ተ ተጉ		ሻ	የ		
Traffic Vol, veh/h	2	0	2	2	0	31	6	904	17	38	1598	24	
uture Vol, veh/h	2	0	2	2	0	31	6	904	17	38	1598	24	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-		-				50			0		-	
Veh in Median Storage	.# -	0		-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-		0		-	0		-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mymt Flow	2	0	2	2	0	34	7	1004	19	42	1776	27	
VIVIIIL I IOW	2	U	2	2	U	34	,	1004	17	42	1770	21	
Major/Minor N	Minor2		- 1	Minor1			Major1		- 1	Major2			
Conflicting Flow All	2290	2911	902	1822	2915	512	1803	0	0	1023	0	0	
Stage 1	1874	1874	702	1022	1028	JIZ	1003	-	J	1023	-	J	
Stage 2	416	1037		794	1887							-	
	6.44	6.54		6.44	6.54		5.34	-	-	5.34	-		
Critical Hdwy			7.14	7.34	5.54	7.14	5.54			5.54		-	
Critical Hdwy Stg 1	7.34	5.54				-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.74	5.54	- 0.00	6.74	5.54		0.10	-	-	- 0.40	-	-	
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-	
Pot Cap-1 Maneuver	*222	*48	*533	*547	48	434	*671	-	-	382	-	-	
Stage 1	*547	*521	-	*190	310	-	-	-	-	-	-	-	
Stage 2	*535	*307	-	*547	517	-	-	-	-	-	-	-	
Platoon blocked, %	1	1	1	1	1		1	-	-		-	-	
Mov Cap-1 Maneuver	*185	*43	*533	*495	42	434	*671	-	-	382	-	-	
Mov Cap-2 Maneuver	*185	*43	-	*495	42	-	-	-	-	-	-	-	
Stage 1	*542	*463	-	*188	307	-	-	-	-	-	-	-	
Stage 2	*487	*304	-	*485	460	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	18.3			14			0.1			0.4			
HCM LOS	C			В			0.1			0.1			
TOW EOS	Ü												
Minor Lane/Major Mvm	it	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR				
Capacity (veh/h)		* 671			275	437	382						
HCM Lane V/C Ratio		0.01			0.016		0.111						
HCM Control Delay (s)		10.4			18.3	14	15.6						
HCM Lane LOS		В			C	В	C						
HCM 95th %tile Q(veh))	0	-	-	0	0.3	0.4	-	-				
Notes													
-: Volume exceeds car	acity	¢. Da	elay exc	onds 2	nne	L. Com	putation	Not D	ofinod	*. AII	maiory	/olume i	in platoon
voidine exceeds cap	Jacity	\$. DE	eidy ext	ccus 3	005	T. CUII	putation	i NULD	cilled	. All	majul \	volume i	ii piatuuti

Intersection	
Int Delay, s/veh 0.6	
Movement EBL EBR NBL NBT SBT SBR	
Lane Configurations Y 7 1144 11	
Fraffic Vol., veh/h 20 61 16 867 1614 19	
Future Vol, veh/h 20 61 16 867 1614 19	
Conflicting Peds, #/hr 0 0 0 0 0 0	
Sign Control Stop Stop Free Free Free	
RT Channelized - None - None - None	
Storage Length 0 - 50	
/eh in Median Storage, # 0 0 0 -	
Grade, % 0 0 0 -	
Peak Hour Factor 90 90 90 90 90 90	
leavy Vehicles, % 2 2 2 2 2 2	
Ivmt Flow 22 68 18 963 1793 21	
lajor/Minor Minor2 Major1 Major2	
Conflicting Flow All 2214 897 1814 0 - 0	
Stage 1 1793	
Stage 2 421	
Critical Hdwy 6.29 6.94 4.14	
ritical Hdwy Stg 1 5.84	
iritical Hdwy Stg 2 6.04	
ollow-up Hdwy 3.67 3.32 2.22	
of Cap-1 Maneuver *368 *407 *608	
Stage 1 *368	
Stage 2 *595	
Platoon blocked, % 1 1 1	
Mov Cap-1 Maneuver *357 *407 *608	
Mov Cap-2 Maneuver *326	
Stage 1 *357	
Stage 2 *595	
pproach EB NB SB	
HCM Control Delay, s 17.3 0.2 0	
ICM CONTROL DETAY, S 17.3 0.2 0	
TOTAL EGG	
/linor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR	
11 3 ()	
CM Lane V/C Ratio 0.029 - 0.235 CM Control Delay (s) 11.1 - 17.3	
ICM Lane LOS B - C	
1CM 95th %tile Q(veh)	
10.11 - 0.4	
lotes	
: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in	n platoon

Intersection						
Int Delay, s/veh	4.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	4	**	,,,,,,	ODL	7
Traffic Vol, veh/h	44	15	25	1	1	7
Future Vol. veh/h	44	15	25	1	1	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free		Stop
RT Channelized	Free		Free	None	Stop	
		140110			-	
Storage Length	- "	-	-	-	-	0
Veh in Median Storage		0	0	-	0	-
Grade, %		0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	49	17	28	1	1	8
Major/Minor	Major1	, h	Major2		Minor2	
	29	0			144	29
Conflicting Flow All		U	-	0		
Stage 1	-	-	-	-	29	-
Stage 2	-	-	-	-	115	
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1584	-	-	-	849	1046
Stage 1	-	-	-	-	994	-
Stage 2	-	-	-	-	910	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1584		-		823	1046
Mov Cap-2 Maneuver	-				823	-
Stage 1					963	_
Stage 2					910	
Staye 2					710	
Approach	EB		WB		SB	
HCM Control Delay, s	5.5		0		8.5	
HCM LOS					Α	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	
Capacity (veh/h)		1584	-	-	-	1046
HCM Lane V/C Ratio		0.031	-	-	-	0.007
HCM Control Delay (s))	7.3	0	-	-	8.5
HCM Lane LOS		Α	Α		-	Α
HCM 95th %tile Q(veh)	0.1		-	-	0
α(νοιι	,					

Mountain View Medical Center Total AM

0.4

ኻ ተተው

56 1992

↑ ↑↑↑ 27 1507

0 0 0 0 0 0 0

85

34 0 0 16 0

- None

0

2 2

30 1674

- 150

90 90

38

Free Free Free Free Free Stop Stop Stop Stop Stop Stop

- None

- 1138

- 3.92

0

90

0

56 1992 57 27 1507

- None -

0

Veh in Median Storage, # - 0 - - 0 - - 0 -

90 90 90

63

- - 3.12

Intersection
Int Delay, s/veh

Movement
Lane Configurations

Traffic Vol, veh/h

Future Vol, veh/h

Sign Control

Grade, %

Mvmt Flow

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Pot Cap-1 Maneuver Stage 1

Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy

Conflicting Peds, #/hr

7: Med. Center Dwy/Albertson's Dwy & Shea Blvd HCM 6th TWSC

0 35

Mountain Vie	w Medical Center
TOTAL AIVI	

8: Shea Blvd & 50th Street Timing Report, Sorted By Phase

Synchro 10 Report

Page 10

Phase Number	4	6	8		
Movement	EBTL	SBL	WBT		
Lead/Lag					
Lead-Lag Optimize					
Recall Mode	C-Max	Max	C-Max		
Maximum Split (s)	70	50	70		
Maximum Split (%)	58.3%	41.7%	58.3%		
Minimum Split (s)	25.3	29.2	25.3		
Yellow Time (s)	4.3	3	4.3		
All-Red Time (s)	1	2.2	1		
Minimum Initial (s)	15	5	15		
Vehicle Extension (s)	3	3	3		
Minimum Gap (s)	3	3	3		
Time Before Reduce (s)	0	0	0		
Time To Reduce (s)	0	0	0		
Walk Time (s)	8	8	8		
Flash Dont Walk (s)	12	16	12		
Dual Entry	Yes	Yes	Yes		
Inhibit Max	Yes	Yes	Yes		
Start Time (s)	47	117	47		
End Time (s)	117	47	117		
Yield/Force Off (s)	111.7	41.8	111.7		
Yield/Force Off 170(s)	99.7	25.8	99.7		
Local Start Time (s)	0	70	0		
Local Yield (s)	64.7	114.8	64.7		
Local Yield 170(s)	52.7	98.8	52.7		
Intersection Summary					
Cycle Length			120		
Control Type	Actua	ated-Coo	rdinated		
Natural Cycle			75		
Offset: 47 (39%), Referen	iced to phase	4:EBTL	and 8:WB	T, Start of Green	

Stage 2	-	-	-	-	-	-	0	0	-	0	0	-		
Platoon blocked, %	1	-	-	1	-	-			1			1		
Mov Cap-1 Maneuver	*701	-	-	*552	-	-	-	-	*439	-	-	*558		
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-		
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	0.3			0.2			13.5			11.9				
HCM LOS							В			В				
Minor Lane/Major Mvmt		VBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1					
Capacity (veh/h)		439	* 701	-	-	* 552	-	-	558					
HCM Lane V/C Ratio		0.04	0.089	-	-	0.054	-	-	0.07					
HCM Control Delay (s)		13.5	10.6	-	-	11.9	-	-	11.9					
HCM Lane LOS		В	В	-	-	В	-	-	В					
HCM 95th %tile Q(veh)		0.1	0.3	-	-	0.2	-	-	0.2					

 07/03/2018
 Synchro 10 Report

 Civtech
 Page 9

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

07/03/2018 Ciytech

8: Shea Blvd & 50th Street HCM 6th Signalized Intersection Summary

	۶	→	←	4	\	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	^ ^	Φß		ሻ	7	
Traffic Volume (veh/h)	40	1989	1500	54	76	44	
Future Volume (veh/h)	40	1989	1500	54	76	44	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	44	2210	1667	60	84	49	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	93	2753	1887	68	665	592	
Arrive On Green	0.54	0.54	0.54	0.54	0.37	0.37	
Sat Flow, veh/h	281	5274	3593	125	1781	1585	
Grp Volume(v), veh/h	44	2210	843	884	84	49	
Grp Sat Flow(s), veh/h/ln	281	1702	1777	1848	1781	1585	
Q Serve(g_s), s	14.0	42.2	50.0	50.7	3.7	2.4	
Cycle Q Clear(g_c), s	64.7	42.2	50.0	50.7	3.7	2.4	
Prop In Lane	1.00			0.07	1.00	1.00	
Lane Grp Cap(c), veh/h	93	2753	958	996	665	592	
V/C Ratio(X)	0.47	0.80	0.88	0.89	0.13	0.08	
Avail Cap(c_a), veh/h	93	2753	958	996	665	592	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	54.8	22.5	24.3	24.4	24.7	24.3	
Incr Delay (d2), s/veh	16.3	2.6	11.4	11.5	0.4	0.3	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	3.2	23.6	31.0	32.4	3.0	1.7	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	71.1	25.1	35.7	36.0	25.1	24.6	
LnGrp LOS	E	С	D	D	С	С	
Approach Vol, veh/h		2254	1727		133		
Approach Delay, s/veh		25.9	35.8		24.9		
Approach LOS		С	D		С		
Timer - Assigned Phs				4		6	8
Phs Duration (G+Y+Rc), s				70.0		50.0	70.0
Change Period (Y+Rc), s				5.3		5.2	5.3
Max Green Setting (Gmax), s				64.7		44.8	64.7
Max Q Clear Time (g_c+l1), s				66.7		5.7	52.7
Green Ext Time (p_c), s				0.0		0.4	8.9
Intersection Summary							
HCM 6th Ctrl Delay			30.1				
HCM 6th LOS			С				

Mountain View Medical Center Total PM

1: Tatum Blvd & Desert Cove Ave Timing Report, Sorted By Phase

	- *\$	4	→	4
Phase Number	2	4	6	8
Movement	NBTL	EBTL	SBTL	WBTL
Lead/Lag				
Lead-Lag Optimize				
Recall Mode	None	C-Max	None	C-Max
Maximum Split (s)	66	36	66	36
Maximum Split (%)	64.7%	35.3%	64.7%	35.3%
Minimum Split (s)	25.3	35	25.3	35
Yellow Time (s)	4.3	3	4.3	3
All-Red Time (s)	1	3	1	3
Minimum Initial (s)	15	4	15	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	8	7	8	7
Flash Dont Walk (s)	12	22	12	22
Dual Entry	Yes	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	86	50	86	50
End Time (s)	50	86	50	86
Yield/Force Off (s)	44.7	80	44.7	80
Yield/Force Off 170(s)	32.7	58	32.7	58
Local Start Time (s)	36	0	36	0
Local Yield (s)	96.7	30	96.7	30
Local Yield 170(s)	84.7	8	84.7	8
Intersection Summary				
Cycle Length			102	
Control Type	Actu	ated-Coo	rdinated	
Natural Cycle			150	
Offset: 50 (49%), Reference	ed to phase	4:EBTL	and 8:WE	BTL, Start
	,			

Splits and Phases: 1: Tatum Blvd & Desert Cove Ave

 07/03/2018
 Synchro 10 Report

 Civtech
 Page 1

Mountain View Medical Center Total PM

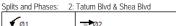
1: Tatum Blvd & Desert Cove Ave HCM 6th Signalized Intersection Summary

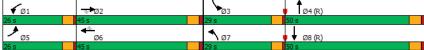
	۶	→	\rightarrow	•	←	•	1	†	/	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ተተተ	7	ሻ	ተተ _ጉ	
Traffic Volume (veh/h)	28	1	28	77	1	100	10	1731	41	113	1281	2
Future Volume (veh/h)	28	1	28	77	1	100	10	1731	41	113	1281	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	31	1	31	86	1	111	11	1923	46	126	1423	2
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	243	24	208	225	21	249	238	3039	943	148	3134	4
Arrive On Green	0.29	0.29	0.29	0.29	0.29	0.29	0.60	0.60	0.60	0.60	0.60	0.60
Sat Flow, veh/h	647	81	706	592	72	847	376	5106	1585	222	5266	7
Grp Volume(v), veh/h	63	0	0	198	0	0	11	1923	46	126	920	505
Grp Sat Flow(s),veh/h/ln	1434	0	0	1510	0	0	376	1702	1585	222	1702	1869
Q Serve(g_s), s	0.0	0.0	0.0	7.6	0.0	0.0	1.7	25.0	1.2	35.7	15.3	15.3
Cycle Q Clear(g_c), s	2.9	0.0	0.0	10.5	0.0	0.0	17.0	25.0	1.2	60.7	15.3	15.3
Prop In Lane	0.49		0.49	0.43		0.56	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	474	0	0	495	0	0	238	3039	943	148	2026	1112
V/C Ratio(X)	0.13	0.00	0.00	0.40	0.00	0.00	0.05	0.63	0.05	0.85	0.45	0.45
Avail Cap(c_a), veh/h	474	0	0	495	0	0	238	3039	943	148	2026	1112
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	0.33	0.33	0.33	1.00	1.00	1.00
Uniform Delay (d), s/veh	26.4	0.0	0.0	29.0	0.0	0.0	16.2	13.4	8.6	40.0	11.5	11.5
Incr Delay (d2), s/veh	0.6	0.0	0.0	2.4	0.0	0.0	0.0	0.1	0.0	34.6	0.2	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	2.2	0.0	0.0	7.6	0.0	0.0	0.3	11.7	0.7	8.2	9.3	10.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	27.0	0.0	0.0	31.4	0.0	0.0	16.2	13.6	8.6	74.5	11.6	11.7
LnGrp LOS	С	Α	Α	С	Α	Α	В	В	Α	E	В	В
Approach Vol, veh/h		63			198			1980			1551	
Approach Delay, s/veh		27.0			31.4			13.5			16.8	
Approach LOS		С			С			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		66.0		36.0		66.0		36.0				
Change Period (Y+Rc), s		5.3		6.0		5.3		6.0				
Max Green Setting (Gmax), s		60.7		30.0		60.7		30.0				
Max Q Clear Time (g_c+l1), s		27.0		4.9		62.7		12.5				
Green Ext Time (p_c), s		21.0		0.3		0.0		1.0				
Intersection Summary												
HCM 6th Ctrl Delay			16.0									
HCM 6th LOS			В									

Mountain View Medical Center Total PM

2: Tatum Blvd & Shea Blvd Timing Report, Sorted By Phase

	•	*	-	†	•	**	1	Į.	
Phase Number	1	2	3	4	5	6	7	8	
Movement	WBL	EBT	SBL	NBT	EBL	WBT	NBL	SBT	_
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	C-Max	None	None	None	C-Max	
Maximum Split (s)	26	45	29	50	26	45	29	50	
Maximum Split (%)	17.3%	30.0%	19.3%	33.3%	17.3%	30.0%	19.3%	33.3%	
Minimum Split (s)	10	36.9	20	40	10	36.9	20	40	
Yellow Time (s)	4	4.3	4	4.3	4	4.3	4	4.3	
All-Red Time (s)	1	1.6	1	1.7	1	1.6	1	1.7	
Minimum Initial (s)	5	15	15	15	5	15	15	15	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		8		8		8		8	
Flash Dont Walk (s)		23		26		23		26	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	105	131	26	55	105	131	26	55	
End Time (s)	131	26	55	105	131	26	55	105	
Yield/Force Off (s)	126	20.1	50	99	126	20.1	50	99	
Yield/Force Off 170(s)	126	147.1	50	73	126	147.1	50	73	
Local Start Time (s)	50	76	121	0	50	76	121	0	
Local Yield (s)	71	115.1	145	44	71	115.1	145	44	
Local Yield 170(s)	71	92.1	145	18	71	92.1	145	18	
Intersection Summary									


Intersection Summary


Cycle Length 150

Control Type Actuated-Coordinated

Natural Cycle 150

Offset: 55 (37%), Referenced to phase 4:NBT and 8:SBT, Start of Green

Synchro 10 Report Page 3 07/03/2018 Civtech

Mountain View Medical Center Total PM

2: Tatum Blvd & Shea Blvd HCM 6th Signalized Intersection Summary

	۶	→	•	•	←	•	1	†	/	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	^	7	ሻሻ	ተተተ	7	ሻሻ	ተተ _ጉ		ሻሻ	ተተ _ጉ	
Traffic Volume (veh/h)	373	1228	243	198	1572	216	659	1133	270	289	688	287
Future Volume (veh/h)	373	1228	243	198	1572	216	659	1133	270	289	688	287
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	414	1364	270	220	1747	240	732	1259	300	321	764	319
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	459	1605	498	274	1331	413	553	1445	344	378	1065	441
Arrive On Green	0.13	0.31	0.31	0.08	0.26	0.26	0.16	0.35	0.35	0.11	0.30	0.30
Sat Flow, veh/h	3456	5106	1585	3456	5106	1585	3456	4117	981	3456	3544	1466
Grp Volume(v), veh/h	414	1364	270	220	1747	240	732	1041	518	321	734	349
Grp Sat Flow(s),veh/h/ln	1728	1702	1585	1728	1702	1585	1728	1702	1694	1728	1702	1606
Q Serve(g_s), s	17.7	37.5	21.1	9.4	39.1	19.8	24.0	42.9	42.9	13.7	28.8	29.2
Cycle Q Clear(g_c), s	17.7	37.5	21.1	9.4	39.1	19.8	24.0	42.9	42.9	13.7	28.8	29.2
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.58	1.00		0.91
Lane Grp Cap(c), veh/h	459	1605	498	274	1331	413	553	1195	595	378	1023	483
V/C Ratio(X)	0.90	0.85	0.54	0.80	1.31	0.58	1.32	0.87	0.87	0.85	0.72	0.72
Avail Cap(c_a), veh/h	484	1605	498	484	1331	413	553	1195	595	553	1023	483
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	0.88	0.88
Uniform Delay (d), s/veh	64.1	48.1	42.5	67.9	55.5	48.3	63.0	45.5	45.5	65.6	46.8	46.9
Incr Delay (d2), s/veh	19.3	4.5	1.2	5.5	146.1	2.0	158.0	8.8	16.1	7.3	3.8	8.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	14.0	23.3	13.3	7.8	51.4	12.8	34.5	26.8	28.1	10.3	18.3	18.3
Unsig. Movement Delay, s/veh		F0.7	40.7	70.4	001 (FO 4	004.0	F4.0	(1)	70.0	F0 /	FF 0
LnGrp Delay(d),s/veh	83.4	52.7	43.7	73.4	201.6	50.4	221.0	54.3	61.6	72.9	50.6	55.0
LnGrp LOS	F	D	D	E	F	D	F	D	E	E	D	D
Approach Vol, veh/h		2048			2207			2291			1404	
Approach Delay, s/veh		57.7			172.3			109.2			56.8	
Approach LOS		E			F			F			Е	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	16.9	53.1	21.4	58.7	24.9	45.0	29.0	51.1				
Change Period (Y+Rc), s	5.0	* 5.9	5.0	* 6	5.0	* 5.9	5.0	* 6				
Max Green Setting (Gmax), s	21.0	* 39	24.0	* 44	21.0	* 39	24.0	* 44				
Max Q Clear Time (g_c+I1), s	11.4	39.5	15.7	44.9	19.7	41.1	26.0	31.2				
Green Ext Time (p_c), s	0.5	0.0	0.7	0.0	0.2	0.0	0.0	6.0				
Intersection Summary												
HCM 6th Ctrl Delay			104.2									
HCM 6th LOS			F									

07/03/2018 Synchro 10 Report Civtech Page 4

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection													
Int Delay, s/veh	7.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	EDL	£61 ♣	EDR	WDL	₩	NDK	NDL	†	NDK	SDL	↑ ↑↑	JDK 7	
Traffic Vol, veh/h	24	0	126	14	0	84	55	TTT 2005	13	2		149	
	24					84	55	2005	13	2	1003		
Future Vol, veh/h	0	0	126	14	0	0	0		0		1003	149	
Conflicting Peds, #/hr	-	0	0	0	-	-	-	0	-	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	105	-	None	-		None 150	
Storage Length	-	-	-		-	-		-	-	-	-	150	
Veh in Median Storage	-	0	-		0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
/Ivmt Flow	27	0	140	16	0	93	61	2228	14	2	1114	166	
Major/Minor I	Minor2		- 1	Vinor1			Major1		N	/lajor2			
Conflicting Flow All	2131	3482	557	2807	3641	1121	1280	0	0	2242	0	0	
Stage 1	1118	1118	-	2357	2357	-	-	-	-	-		-	
Stage 2	1013	2364	-	450	1284	-	-	-	-	-		-	
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34		-	
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-		-	
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-		-	
ollow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-	
Pot Cap-1 Maneuver	*124	*8	*682	*34	6	172	715	-	-	94		-	
Stage 1	*700	*666	-	*21	68	-	-	-	-	-		-	
Stage 2	*231	*67	-	*700	558	-		-	-			-	
Platoon blocked, %	1	1	1	1	1		1	-	-			-	
Nov Cap-1 Maneuver	*50	*7	*682	*24	5	172	715	-	-	94		-	
Nov Cap-2 Maneuver	*50	*7	-	*24	5	-	-	-	-	-		-	
Stage 1	*641	*613	-	*19	62				-	-			
Stage 2	*97	*61	-	*513	514			-	-				
5													
Nama a a b	ED			ME			NID			CD			
Approach	EB			WB			NB			SB			
HCM Control Delay, s	11.6			241.3			0.3			0.1			
HCM LOS	В			F									
/linor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1\	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		715	-		682	91	94	-					
HCM Lane V/C Ratio		0.085	-		0.205	1.197	0.024	-					
HCM Control Delay (s)		10.5	-	-	11.6	241.3	44.2	-	-				
ICM Lane LOS		В	-	-	В	F	Е	-					
HCM 95th %tile Q(veh))	0.3	-	-	0.8	7.6	0.1	-	-				
` '													
Notes		Α. Γ.			00	0	1.17	NI I D	C 1	+ **			
-: Volume exceeds cap	pacity	\$: De	elay exc	eeds 3	UUS	+: Com	putation	n Not D	etined	î: All	major v	/olume i	in platoon

Intersection													
Int Delay, s/veh	11												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			ተ ተጉ			^		
Traffic Vol, veh/h	8	1	2	21	0	65	0	1967	8	37	1130	5	
Future Vol. veh/h	8	1	2	21	0	65	0	1967	8	37	1130	5	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-		None	
Storage Length			-			-	50		-	0		-	
Veh in Median Storage	# -	0	-		0	-	-	0	-	-	0	-	
Grade, %	-	0			0			0			0		
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mymt Flow	9	1	2	23	0	72	0	2186	9	41	1256	6	
WWW. TIOW	,		_	20	U	12	U	2100	,		1200	U	
	Vinor2			Vinor1			Major1			Major2			
Conflicting Flow All	2215	3536	631	2776	3535	1098	1262	0	0	2195	0	0	
Stage 1	1341	1341	-	2191	2191	-	-	-	-	-	-	-	
Stage 2	874	2195	-	585	1344	-	-	-	-	-	-	-	
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-	
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-	
Pot Cap-1 Maneuver	126	8	*647	*41	8	178	*814	-	-	99	-	-	
Stage 1	642	618	-	*28	82	-	-	-	-	-	-	-	
Stage 2	282	82	-	*664	615	-	-	-	-	-	-	-	
Platoon blocked, %	1	1	1	1	1		1	-	-		-	-	
Mov Cap-1 Maneuver	51	5	*647	*~ 23	5	178	*814	-	-	99	-	-	
Mov Cap-2 Maneuver	51	5	-	*~ 23	5	-	-	-	-	-	-	-	
Stage 1	642	362	-	*28	82		-		-	-	-	-	
Stage 2	168	82	-	*387	360	-	-	-	-	-	-	-	
, in the second													
Approach	FB			WB			NB			SB			
HCM Control Delay, s			¢	363.6			0			2.1			
HCM LOS	102.0 F		φ	505.0 F			U			2.1			
HCIVI LU3	г												
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1\		SBL	SBT	SBR				
Capacity (veh/h)		* 814	-	-	31	67	99	-	-				
HCM Lane V/C Ratio		-	-	-	0.394	1.426	0.415	-	-				
HCM Control Delay (s)		0	-	-		363.6	65.1	-	-				
HCM Lane LOS		Α	-	-	F	F	F	-	-				
HCM 95th %tile Q(veh))	0	-	-	1.3	8	1.7	-	-				
Notes													
	nacity	¢. D.	lay ova	oods 2	ΛΛc	Com	nutation	Not D	ofinod	*, AII	major	olumo i	n platoon
 Volume exceeds cap 	vacily	\$: D6	elay exc	eeus 3	UUS	+: Com	putation	n Not D	eimed	: All	major	roiumé l	n platoon

 07/03/2018
 Synchro 10 Report

 Civtech
 Page 5

Intersection								
nt Delay, s/veh	0.3							
/lovement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y	LDIX	*		*	7		
Fraffic Vol, veh/h	17	20	47	2011	1066	66		
uture Vol, veh/h	17	20	47	2011	1066	66		
Conflicting Peds, #/hr		0	0	0	0	00		
Sign Control	Stop		Free	Free	Free	Free		
RT Channelized	Stop -		riee -	None	riee -	None		
Storage Length	0	None -	50	NOTIC -		NONE -		
/eh in Median Storag			-	0	0			
ren in wedian storay Grade, %	e, # 0		- 1	0	0			
	90			90		90		
Peak Hour Factor		90	90		90			
leavy Vehicles, %	2 19	2	2	2	1104	2		
lvmt Flow	19	22	52	2234	1184	73		
lajor/Minor	Minor2		Major1		Major2			
onflicting Flow All	2182	592	1257	0	-	0		
Stage 1	1184	-	-	-	-	-		
Stage 2	998	-	-	-	-	-		
ritical Hdwy	6.29	6.94	4.14	-	-	-		
ritical Hdwy Stg 1	5.84	-	-	-	-	-		
ritical Hdwy Stg 2	6.04	-	-	-	-	-		
ollow-up Hdwy	3.67	3.32	2.22	-	-	-		
ot Cap-1 Maneuver	*281	*639	*956	-	-	-		
Stage 1	*579	-	-	-	-	-		
Stage 2	*293		-	-	-	-		
Platoon blocked, %	1	1	1	-	-	-		
Nov Cap-1 Maneuver		*639	*956	-	-	-		
Nov Cap-2 Maneuver	*218	-	-	-	-	-		
Stage 1	*547		-		-			
Stage 2	*293	-	-	-	-	-		
, in the second								
pproach	EB		NB		SB			
ICM Control Delay, s			0.2		0			
ICM LOS	C		0.2		- 0			
200								
liner Lang/Majo- Mi	m+	NBL	NDT	FDI n1	SBT	CDD		
linor Lane/Major Mvr	III		IVDI	EBLn1	SDI	SBR		
apacity (veh/h)		* 956	-	339	-			
CM Cartes Delay (.\	0.055	-	0.121	-	-		
CM Control Delay (s	5)	9	-	17.1	-	-		
CM Lane LOS	,	A	-	С	-	-		
ICM 95th %tile Q(veh	1)	0.2	-	0.4	-	-		
otes								
: Volume exceeds ca	apacity	\$: De	elay exc	ceeds 30	00s	+: Com	putation Not Defined	*: All major volume in platoon
	, ,		,					.,

Intersection						
Int Delay, s/veh	5.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	4	WD1	WOR	JUL	7000
Traffic Vol, veh/h	22	27	19	2	1	71
Future Vol. veh/h	22	27	19	2	1	71
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	1166	None	-	None	Jiup -	None
Storage Length		NONE -		NOTIC -		0
Veh in Median Storage		0	0		0	U
Grade. %		0	0		0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	24	30	21	2	1	79
Major/Minor N	Major1	N	Major2	N	Minor2	
Conflicting Flow All	23	0	-	0	100	22
Stage 1		-		-	22	-
Stage 2		-		-	78	-
Critical Hdwy	4.12		-	-	6.42	6.22
Critical Hdwy Stg 1					5.42	-
Critical Hdwy Stg 2		-		-	5.42	-
Follow-up Hdwy	2.218	-			3.518	
Pot Cap-1 Maneuver	1592	-		-	899	1055
Stage 1	1072	-			1001	1000
Stage 2			-	-	945	
Platoon blocked, %		-			743	
Mov Cap-1 Maneuver	1592	_			886	1055
Mov Cap-1 Maneuver	1092				886	1000
						-
Stage 1	-	-	-	-	986	-
Stage 2	-	-	-	-	945	-
Approach	EB		WB		SB	
HCM Control Delay, s	3.3		0		8.7	
HCM LOS					A	
Minor Lane/Major Mvm	+	EBL	EBT	WBT	WBR S	CDI n1
	ı			WDI	WDR:	
Capacity (veh/h)		1592	-	-	-	1055
HCM Lane V/C Ratio		0.015	-	-		0.075
		7.3	0	-	-	8.7
HCM Control Delay (s)						
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		A 0	Ā			A 0.2

 07/03/2018
 Synchro 10 Report

 Civtech
 Page 7

Mountain View Medical Center Total PM

7: Med. Center Dwy/Albertson's Dwy & Shea Blvd HCM 6th TWSC

Mountain	View	Medical	Center
Total PM			

8: Shea Blvd & 50th Street Timing Report, Sorted By Phase

Intersection												
Int Delay, s/veh	0.7											
Movement	EBL	EBT	EBR			WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተኈ		"	**	7			7			7
Traffic Vol, veh/h	41	1686	26		1962	91	0	0	38	0	0	56
Future Vol, veh/h	41	1686	26	12	1962	91	0	0	38	0	0	56
Conflicting Peds, #/h	nr 0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-		None	-		None			None			None
Storage Length	205			85		150					-	0
Veh in Median Stora			-	-	0			0			0	
Grade, %	90, "				0			0			0	
eak Hour Factor	90		90	90	_		90	90	90	90	90	90
leavy Vehicles, %	2			2			90	2	2		90	2
lymt Flow		1873			2180		0	0	42		0	
IVIIIL FIUW	40	10/3	29	13	2100	101	U	0	42	0	0	02
ajor/Minor	Major1		N	Major2		1	Minor1			Minor2		
onflicting Flow All	2281	0	0	1902	0	0	-	-	951	-	-	1090
Stage 1				-		-			-			
Stage 2			-				-				-	
Critical Hdwy	5.34		-	5.34		_			7.14			7.14
Critical Hdwy Stg 1	0.01			- 0.01		-						
Critical Hdwy Stg 2						_						
Follow-up Hdwy	3.12		-	3.12					3.92			3.92
Pot Cap-1 Maneuve							0	0		0		*447
Stage 1	505			170			0	0	224	0	0	
Stage 2							0		-		0	
Platoon blocked, %	1		-			-	U	0		0	0	1
Mov Cap-1 Maneuve	or *542	-	-	140					224			*447
Mov Cap-1 Maneuve				140					224			447
	sı -	-	-	-		-	-	-		-	-	-
Stage 1	-	-	-	-		-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay,	s 0.3			0.2			24.8			14.4		
HCM LOS							С			В		

 07/03/2018
 Synchro 10 Report

 Civtech
 Page 9

- 0.139

- 14.4

- - B

Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1

- - 140

- - 33.4

- - D

- 0.095

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

224 * 563

С В

0.7 0.3

0.188 0.081

Capacity (veh/h) HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

8: Shea Blvd & 50th Street HCM 6th Signalized Intersection Summary

	ၨ	→	—	4	/	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	^	ΦÞ			7	
Traffic Volume (veh/h)	59	1701	2040	50	145	73	
Future Volume (veh/h)	59	1701	2040	50	145	73	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	66	1890	2267	56	161	81	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	60	2753	1911	47	665	592	
Arrive On Green	0.54	0.54	0.54	0.54	0.37	0.37	
Sat Flow, veh/h	157	5274	3638	87	1781	1585	
Grp Volume(v), veh/h	66	1890	1132	1191	161	81	
Grp Sat Flow(s), veh/h/ln	157	1702	1777	1855	1781	1585	
Q Serve(g_s), s	0.0	32.5	64.7	64.7	7.5	4.0	
Cycle Q Clear(g_c), s	64.7	32.5	64.7	64.7	7.5	4.0	
Prop In Lane	1.00	0750	050	0.05	1.00	1.00	
Lane Grp Cap(c), veh/h	60	2753	958	1000	665	592	
V/C Ratio(X)	1.10	0.69	1.18	1.19	0.24	0.14	
Avail Cap(c_a), veh/h	60	2753	958	1000	665	592	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	60.0	20.2	27.6	27.7	25.9	24.8	
Incr Delay (d2), s/veh	146.4	1.4	92.4	96.1	0.9	0.5	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	7.7	18.7	70.7	75.3	6.0	2.9	
Unsig. Movement Delay, s/v		01.6	100 1	100.0	0/.0	05.0	
LnGrp Delay(d),s/veh	206.4	21.6	120.1	123.8	26.8	25.3	
LnGrp LOS	F	C	F	F	С	С	
Approach Vol, veh/h		1956	2323		242		
Approach Delay, s/veh		27.9	122.0		26.3		
Approach LOS		С	F		С		
Timer - Assigned Phs				4		6	
Phs Duration (G+Y+Rc), s				70.0		50.0	
Change Period (Y+Rc), s				5.3		5.2	
Max Green Setting (Gmax),	S			64.7		44.8	
Max Q Clear Time (g_c+l1),	S			66.7		9.5	
Green Ext Time (p_c), s				0.0		0.7	
Intersection Summary							
HCM 6th Ctrl Delay			76.1				
HCM 6th LOS			70.1 E				
HOW OUI EOS			_				

APPENDIX G

SIGNAL WARRANT ANALYSIS

ADOT Traffic Engineering Guidelines and Policies section 611 includes methodology to consider signal warrants for future intersections using projected ADT. The methodology includes multiplying factors to the projected ADT to provide high hour, 4th high hour and 8th high hour volumes to compare with threshold volumes of the peak hour warrant, the 4-hour warrant and the 8-hour warrants. The factors are as follows:

High Hour	Hourly Adjustment Factor
1	0.0771
4	0.0656
8	0.0572

Right-turn factor applied

	NB	SB	EB	WB
2024 AM Total	0%	0%	0%	0%
2024 PM Total	0%	0%	0%	0%

Determine approach PM peak hour volumes	NB	SB	EB	WB
2024 AM Total	927	1660	4	33
2024 PM Total	1975	1172	11	86

Approximate approach ADT volumes by dividing by the high hour adjustment factor (0.0771)

	NB	SB	EB	WB	NB+SB	EB+WB
2024 AM Total	12,023	21,530	52	428	33,554	480
2024 PM Total	25,616	15,201	143	1,115	40,817	1,258

Apply adjustment factors	8th hig	h hour	4th hig	n hour	High hour		
	Major, both approaches	Minor, larger approach	Major, both approaches	Minor, larger approach	Major, both approaches	Minor, larger approach	
2024 AM Total	1,919	24	2,201	28	2,587	33	
2024 PM Total	2,335	64	2,678	73	3,147	86	

Thresholds are dependent on the number of lanes on each street approaching the intersection (prior to auxiliary lanes) and the speed limit on the major roadway.

Number of lanes moving traffic on major street?

Number of lanes moving traffic on major approach of minor street?

Posted or 85 percentile speed over 40 mph?

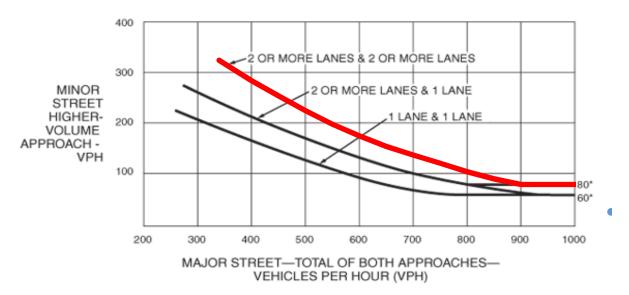
3
2
yes

Now compare to applicable signal warrant criteria of MUTCD

Warrant 1 (Eight-Hour Vehicular Volume)

Thresholds to pas	SS		
Condition A	Major	420 Minor	140
Condition B	Major	630 Minor	70
Combo (A)	Major	336 Minor	112
Combo (B)	Major	504 Minor	56

		Minor,
	Major, both	larger
Volumes to compare	approaches	approach
2024 AM Total	1,919	24
2024 PM Total	2,335	64


Compare criteria for each scenario	Condition A	Condition B	Combination	Signal Warrant met
2024 AM Total	No	No	No	<u>No</u>
2024 PM Total	No	No	No	No

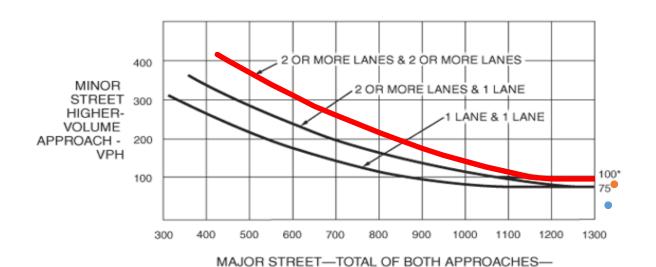
Signal Warrant 2 (Four-Hour Vehicular Volume)

Figure 4C-2. Warrant 2, Four-Hour Vehicular Volume (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Legend	Major, both approaches	Minor, larger approach	Approximate Threshold for Minor
2024 AM Total	2,201	28	80
2024 PM Total	2,678	73	80
not used			
not used			


Signal Warrant 2 is met?

2024 AM Total <u>No</u> 2024 PM Total <u>No</u>

Signal Warrant 3 (Peak Hour)

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

VEHICLES PER HOUR (VPH)

Legend	Major, both approaches	Minor, larger approach	Approximate Threshold for Minor
2024 AM Total	2,587	33	100
2024 PM Total	3,147	86	100
not used			
not used			

Signal Warrant 3 is met?

2024 AM Total <u>No</u> 2024 PM Total <u>No</u>

APPENDIX H

QUEUE LENGTH ANALYSIS

Signalized Intersection 2024

Average Vehicle Length (ft): 25 Cycles: 1.5

Intersection Cycle Length (sec): varies

Equation Used: storage length = 1.5 x (vehicles/hour)/(cycles/hour) x average vehicle length

Interception	Annroach	AM Peak	Midday	PM Peak	Max vehs per	Max trucks	Storage
Intersection	Approach	(veh/hr)	Peak	(veh/hr)	1.5 cycles	per 1.5 cycles	Lenath
	NB Left	29	0	10	2	0	50'
	SB Left	85	0	111	5	0	125'
	EB Left	9	0	27	2	0	50'
Tatum Blvd& Desert Cove Ave	WB Left	20	0	76	4	0	100'
(102 Second Cycle)	NB Right	36	0	40	2	0	50'
	SB Right	10	0	2	1	0	25'
	EB Right	5	0	27	2	0	50'
	WB Right	49	0	98	5	0	125'
	NB Left	298	0	705	42	0	<u>525'</u>
	SB Left	231	0	287	17	0	<u>225'</u>
	EB Left	229	0	365	22	0	<u>275'</u>
Tatum Blvd & Shea Blvd	WB Left	324	0	194	19	0	<u>250'</u>
(140 Second Cycle)	NB Right	221	0	265	16	0	400'
	SB Right	115	0	281	17	0	425'
	EB Right	491	0	242	29	0	725'
	WB Right	182	0	211	13	0	325'
	NB Left	0	0	0	0	0	0'
	SB Left	75	0	141	8	0	200'
	EB Left	38	0	58	3	0	75'
50th St & Shea Blvd	WB Left	0	0	0	0	0	0'
(120 Second Cycle)	NB Right	0	0	0	0	0	0'
	SB Right	43	0	72	4	0	100'
	EB Right	0	0	0	0	0	0'
	WB Right	53	0	49	3	0	75'

Calculations for dual turn lanes are underlined

Unsignalized Intersection 2024

Average Vehicle Length (ft): 25

Equation Used: storage length = $2 \times (vehicles/hour)/(60 \text{ minutes/hour}) \times average vehicle length}$

Indones of the	A	AM Peak	Midday	PM Peak	Veh per 2	Trucks per	Storage
Intersection	Approach	(veh/hr)	Peak	(veh/hr)	minutes	2 minutes	Lenath
	NB Left	43	0	54	2	0	<u>5</u> 0'
	SB Left	1	0	2	1	0	25'
	EB Left	26	0	24	1	0	25'
Tatum Blvd & Fry's Dwy/Medical	WB Left	9	0	37	2	0	50'
Center Dwy	NB Right	45	0	22	2	0	50'
	SB Right	91	0	146	5	0	125'
	EB Right	69	0	124	5	0	125'
	WB Right	24	0	123	5	0	125'
	NB Left	6	0	0	1	0	25'
	SB Left	51	0	41	2	0	50'
	EB Left	2	0	8	1	0	25'
Tatum Blvd & Beryl Ave/Tatum	WB Left	7	0	43	2	0	50'
Corporate Center Dwy	NB Right	34	0	17	2	0	50'
	SB Right	24	0	5	1	0	25'
	EB Right	2	0	2	1	0	25'
	WB Right	36	0	101	4	0	100'
	NB Left	16	0	46	2	0	50'
	SB Left	0	0	0	0	0	0'
	EB Left	23	0	19	1	0	25'
Tatum Blvd & Gold Dust Ave	WB Left	0	0	0	0	0	0'
ratam biva a cola bast /tvc	NB Right	0	0	0	0	0	0'
	SB Right	20	0	70	3	0	75'
	EB Right	60	0	20	2	0	50'
	WB Right	0	0	0	0	0	0'
	NB Left	0	0	0	0	0	0'
	SB Left	1	0	1	11	0	25'
	EB Left	75	0	38	3	0	75'
Medical Center Dwy & Beryl Ave	WB Left	0	0	0	0	0	0'
medical content buy a bory in the	NB Right	0	0	0	0	0	0'
	SB Right	20	0	130	5	0	125'
	EB Right	0	0	0	0	0	0'
	WB Right	1	0	2	1	0	25'
	NB Left	0	0	0	0	0	0'
	SB Left	0	0	0	0	0	0'
l	EB Left	51	0	36	2	0	50'
Albertsons Dwy/Medical Center	WB Left	39	0	19	2	0	50'
Dwy & Shea Blvd	NB Right	17	0	51	2	0	50'
	SB Right	34	0	55	2	0	50'
	EB Right	99	0	48	4	0	100'
	WB Right	30	0	81	3	0	75'

MOUNTAIN VIEW MEDICAL CENTER REDEVELOPMENT PARKING ANALYSIS

SEC corner of Tatum Boulevard and Shea Boulevard, Town of Paradise Valley

Prepared for:

Stantec Consulting Services, Inc. 8211 South 48th Street Phoenix, AZ 85044

By:

CivTech, Inc. 8590 East Shea Boulevard, Suite 130 Scottsdale, Arizona 85350 (480) 659-4250

> September 2018 CivTech Project # 18-0850

TABLE OF CONTENTS

EXISTING CONDITIONS	
PROPOSED DEVELOPMENT	
PHASING	
CONCLUSIONS	
APPENDIX	
LIST OF TABLES	
Table 1 – Existing Parking Summary	2
Table 2 – Summary of Parking	3
Table 3 – Summary of Parking	3
Table 4 – Summary of Parking	4

The Mountain View Medical Center (MVMC) redevelopment is located at 10555 North Tatum Boulevard. The existing MVMC site encompasses approximately 10.16 net acres and consists of approximately 59,969 gross square feet of medical office land uses. The proposed redevelopment consists of approximately 91,318 net square feet of medical office land use.

CivTech has prepared a parking study that addresses the number of spaces for the proposed medical offices considering parking ratios calculated for the existing center and the future characteristics of the development. The parking analysis will be completed to meet the requirements of the Town of Paradise Valley.

EXISTING CONDITIONS

The MVMC consists of 6 existing buildings located on the southeast corner of Tatum Boulevard and Shea Boulevard. It currently consists of 59,969 gross square feet of medical office. Approximately 9,447 SF were vacant at the time of this study. There are a total of 331 existing parking spaces on site including 305 regular spaces and 26 ADA spaces. The existing site plan and unit information can be found in **Appendix A**.

Existing parking counts were conducted every 30 minutes on June 7th (Thursday) from 6:00AM to 10:00 PM. The existing conditions parking counts and resulting parking rate calculations are included in **Appendix B**. The results for the weekday count are summarized in **Table 1**.

Day	Time at Peak Use	Regular	ADA	Total	
Existing Total Spaces	-	305	26	331	
June 7 th (Thursday)	10:30AM	194	7	201	
(11111111111111111111111111111111111111		Ma	x Spaces Occupied	201	
Excess (Deficit) No. of Spaces					
Excess (Deficit) Pct. of Spaces					

Table 1 – Existing Parking Summary

The results of the existing parking counts concluded that the parking peak occupancy on June 7th was 201 parking spaces at 10:30AM with 194 regular spaces and 7 ADA spaces occupied. There are 130 excess parking spaces (39%) on the weekday of the total 331 existing parking spaces. With the current vacancies, the existing medical office has 50,522 SF in use with a maximum of 201 spaces occupied resulting in a parking rate of approximately 0.8 parking spaces for every 200 SF.

The parking spaces and ratio were determined for the summer months. Information provided by the existing owner/tenants suggested that summer parking utilization was 90% of the winter utilization. To determine the maximum parking for the winter months an adjustment was applied to the summer maximum parking space utilization. The calculated winter maximum parking space utilization is approximately 222 parking spaces resulting in a parking rate of approximately 0.88 parking spaces per 200 square feet.

PROPOSED DEVELOPMENT

The proposed redevelopment at buildout consists of approximately 91,318 net square feet of medical center and a proposed 410 parking spaces, including 12 accessible parking spaces. The proposed parking rate is 0.88 parking spaces per 200 square feet or 4.4 parking spaces for every 1000 SF.

The Special Use Permit (SUP) Guidelines for Paradise Valley provides the Town's Code for onsite parking requirements for medical office. The SUP Guidelines suggest that 1 parking space for every 200 SF of interior floor area should be provided. The parking information shown in the SUP Guidelines for the proposed medical office are summarized in **Table 3**:

Table 2 - Summary of Parking

Land Use	Size	Requirements Per SUP Guidelines	Required Parking Spaces
Medical Office	91,318 SF	1 Parking Space Per 200 SF	456

The Code required parking results using the SUP Guidelines for the MVMC redevelopment of 91,318 SF of medical center will require 456 parking spaces.

The existing parking ratio calculations from actual field observations results in fewer parking spaces per SF of the building than the SUP Guidelines require. The existing facility, when considering vacancies and an increase in usage by 10 percent in the winter months, requires 0.88 parking spaces for every 200 SF. The comparison between the actual parking rate calculated for the facility and the SUP guideline parking rate are provided in **Table 3** for the proposed 91,318 square foot medical facility.

Table 3 - Summary of Parking

Land Use	Size	Requirements	Required Parking Spaces
		SUP Guidelines: 1 Parking Space Per 200 SF	456
Medical Office	91,318 SF	Existing Calculations: 0.8 Parking Spaces Per 200 SF	365
		Existing Adjusted Calculations: 4.4 Parking Spaces Per 1000 SF	402

The medical office requires approximately 456 parking spaces to meet requirements shown in the SUP Guidelines. A total of 402 parking spaces are needed at the MVMC redevelopment to provide an adequate supply to support the proposed use. The development proposes to provide 410 parking spaces which exceeds the expected demand.

The Town of Paradise Valley parking rates include different requirements for specific types of medical offices such as pharmacy (1 space per 300 SF), outpatient surgical facilities (1 space per 2 employees plus 1 space per surgical room), medical laboratories (1 space per 2 employees) and physical therapy facilities (1 space per 1.5 employees) which can result in lower parking needs. The City of Scottsdale, in comparison, requires 1 space per 250 SF of medical office which the proposed redevelopment meets and exceeds. Furthermore, the growth in prominence of passenger transport services may have some effect in parking needs, though this analysis does not evaluate this mode individually.

The parking supply proposed by the MVMC redevelopment will continue to facilitate acceptable operations at the facility.

PHASING

The construction will occur in three (3) phases with Phase 1 including reconstruction of Building F (east corner of the site), Phase 2 including the reconstruction of Building A (south corner of the site) and Phase 3 reconstruction of the remaining buildings. The Town Engineer requested that parking needs be evaluated by Phase to ensure that sufficient parking is provided phases

of construction. The site plan provided in the **Attachments** indicates that Phase 1 consists of 18,697 net square feet and will provide 94 parking spaces, Phase 2 consists of 15,821 net square feet and will provide 79 parking spaces and Phase 3 consists of 56,800 net square feet and will provide 239 parking spaces. These square footages, provided parking and required parking are summarized in **Table 4**.

Table 4 - Summary of Parking

Disease	Size ⁽¹⁾	Parking Sp	Parking Spaces	
Phase	Size	1 per 200 SF	4.4 per 1,000 SF	Provided
Existing	59,969 SF	300	264	331
1	69,304 SF	347	305	334
2	76,309 SF	382	336	357
3	91,318 SF	457	402	410

The project will provide over 4.4 spaces per 1,000 net square feet between each phase in addition to completion of the project.

CONCLUSIONS

The MVMC redevelopment parking evaluation findings are is summarized below:

- The existing parking conditions concluded that parking peak occupancy on June 7th was 201 parking spaces with 9,447 SF of office building vacancies.
 - There are 130 excess parking spaces (39%) on the weekday of the total 331 existing parking spaces.
 - Including the current vacancies, the existing medical office has 50,522 SF in use with a maximum of 201 spaces occupied resulting in approximately 0.8 parking spaces for every 200 SF.
 - Information was obtained that 90% of the winter parking levels are in use in the summer. With the adjustment for the winter months, approximately 222 parking spaces required resulting in a rate of 0.88 parking spaces per 200 square feet or 4.4 parking spaces for every 1000 SF.
- The proposed redevelopment at buildout consists of approximately 91,318 net square feet of medical center. A total of 402 parking spaces are needed at the MVMC redevelopment to provide an adequate supply to support the proposed use. The development proposes to provide 410 parking spaces which exceeds the expected demand.
 - The medical office requires approximately 456 parking spaces per the SUP Guidelines.
 - Using the actual rate calculated for the existing medical facility and applying that rate to the proposed redevelopment, a total of 402 parking space would be required.
 - The Town of Paradise Valley parking rates include different requirements for specific types of medical offices such as pharmacy (1 space per 300 SF), outpatient surgical facilities (1 space per 2 employees plus 1 space per surgical room), medical laboratories (1 space per 2 employees) and physical therapy facilities (1 space per 1.5 employees) which can result in lower parking needs.
 - The City of Scottsdale, in comparison, requires 1 space per 250 SF of medical office which the proposed redevelopment meets and exceeds
- The parking supply proposed by the MVMC redevelopment will continue to facilitate acceptable operations at the facility.
- The project will provide over 4.4 spaces per 1,000 net square feet between each phase in addition to completion of the project.

APPENDIX

APPENDIX A SITE PLAN AND UNIT INFORMATION

APPENDIX B EXISTING COUNTS AND CALCULATIONS

Location		А		В		с		D		E		F	
BEGIN	END	Regular	Handicap	Regular	Handicap	Regular	Handicap	Regular	Handicap	Regular	Handicap	Regular	Handicap
Spaces from	aerial	19	3	25			9	40	6	69	4	25	3
Verified Spaces		68	3	25	t	120	*	40	G	69	4	25	3
7:00	7:30	3	\bigcirc	8	\mathcal{O}	13	0	\$		5	0	0	0
7:30	8:00	6	0	11	\mathcal{O}	16	\bigcirc	ll	l	4	0	t	0
8:00	8:30	4	0	15	0	21	\mathcal{O}	19	l	12	\Diamond	l	0
8:30	9:00	16	F	20	0	41	2	26	2	35	l	6	0
9:00	9:30	17	2	21	0	CHE	4	33	1	Col	3	10	0
9:30	10:00	18	2	20	0	68	17	32	2	38	3	11	0
10:00	10:30	17	2	22	Ò	60	3	34	l	no	立	11	0
10:30	11:00	17		22	0	GS	3	33	\	ш	2	13	σ
11:00	11:30	16	1	21	Ó	63	И	33	l	NS	2	12	0
11:30	12:00	18	0	10	1	61	5	25	2	42	1	12	Ø
12:00	12:30	12	0	16	l	63	60	17	U	37	1	19	0
12:30	1:00	11	2	12	1	SI	u	17	60	36	0	19	Q
1:00	1:30	13	2	9	0	LOUR	3	16	3	27	O	20	١
1:30	2:00	12	γ	a	0	W	3	18	3	26	0	22	L
2:00	2:30	1.6	0	16	Ó	50	2	29	H	29	[20	ð
2:30	3:00	16	0	20	0	53	ť	31	2	31	(20	0
3:00	3:30	17	0	22	0	5(3	32	2	35	2	10	0
3:30	4:00	16	1	23	0	63	2	32	l	34	Ø	7	0
4:00	4:30	16	0	20	0	40	l	28	0	25	0	6	0
4:30	5:00	12	Q	FY	0	32	0	20	0	100	[6	0
5:00	5:30	ox	0	12	0	PY	Q	18	0	fl	0	6	9
5:30	6:00	7.	0	10	0	12	0	12	0	10-	0	6	0
6:00	6:30	5	0	6	Ò	9	0	4	0	8	0	3	0

Time	А		В		С		D		E		F		Total	Total ADA	Total
	Regular	ADA	Regular	ADA	Regular	ADA	Regular	ADA	Regular	ADA	Regular	ADA	Regular		
Existing Total Spaces	19	3	25	1	120	9 .	40	6	69	4	25	3	298	26	324
7:00 AM	3	0	8	0	13	0	8	1	5	0	0	0	37	11	38
7:30 AM	6	0 .	11	0	16	0	11	1	9	0	1	0	54	1	55
8:00 AM	9	0	15	0	21	0	19	1	12	0	_1	0	77	1	78
8:30 AM	16	. 1	20	0	41	2	26	2	35	1	6	0	144	6	150
9:00 AM	17	2	21	0	44	4	30	1	41	3	10	0	163	10	173
9:30 AM	18	2	20	0	68	4	32	2	. 39	3	11	0	188	11	199
10:00 AM	17	2	22	0	60	3	34	1	40	2	11	0	184	8	192
10:30 AM	17	1	22	0	65	. 3	33	1	44	2	13	0	194	7	201
11:00 AM	16	1	21	0	65	4	33	1	45	2	12	0	192	8	200
11:30 AM	18	0	19	1	61	5	25	. 2	42	1	12	0	177	9.	186
12:00 PM	12	0	16	1	63	4	17	4	37	1	15	0	160	10	170
12:30 PM	11	2	. 12	1	51	4 :	17	4	36	0:11	18	0	145	11	156
1:00 PM	13	2	9	0	44	3	16	3	27	0	20	1	129	9	138
1:30 PM	12	1	9	0	44	3	18	3	28	0	22	1	133	8	141
2:00 PM	16	0	16	0	50	2	29	4	29	1	20	0	160	7	167
2:30 PM	18	0	20	0 :	53	1	31	2	31	1	20	0 :	173	4	177
3:00 PM	17	0	22	0	51	3	32	2	35	0	10	0	167	5	172
3:30 PM	16	1	23	0	. 55	2	32	1	34	0	7	0	167	4	171
4:00 PM	16	0	20	0	40	1	28	0	25	0	6	0	135	1	136
4:30 PM	12	0	17	0	32	0	20	0	14	1	6	0	101	1	102
5:00 PM	9	0	12	0	19	0	18	0	11	0	6	0	75	0	75
5:30 PM	7	0	10	0	12	0	12	0	10	0	6	0	57	0	57
6:00 PM	5	0	-6	0	9	0	4	0	8	0	3	0	35	0	35
	Max Spaces Occupied												•	201	
	Existing Spaces												324		
												Excess (Deficit) No.	of Spaces	123
				Excess (Deficit) Pct. of Spaces								of Spaces	38%		

