

Smoke Tree Resort

Traffic Impact Analysis

7101 E. Lincoln Drive Town of Paradise Valley, Arizona

February 2019 Project No. 18-0550

Prepared For:

Beus Gilbert, PLC 701 N. 44th Street Phoenix, Arizona 85008

For Submittal to:

Town of Paradise Valley

Prepared By:

10605 North Hayden Road Suite 140 Scottsdale, Arizona 85260 480-659-4250

SMOKE TREE RESORT TRAFFIC IMPACT ANALYSIS

7101 E Lincoln Drive Town of Paradise Valley, Arizona

Prepared for:

Beus Gilbert PLLC 701 N 44th Street Phoenix, Arizona 85008

For Submittal to:

Town of Paradise Valley

Prepared By:

CivTech, Inc. 10605 North Hayden Road Suite 140 Scottsdale, Arizona 85260 (480) 659-4250

Expires 3-31-2019

February 2019

CivTech Project No. 18-0550

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
INTRODUCTION	4
EXISTING CONDITIONS	6
SURROUNDING LAND USE	6
EXISTING ROADWAY NETWORK	6
EXISTING INTERSECTION CONFIGURATION	6
EXISTING TRAFFIC VOLUMES	10
EXISTING CAPACITY ANALYSIS	12
PROPOSED DEVELOPMENT	14
SITE LOCATION	14
SITE ACCESS	14
TRIP GENERATION	16
TRIP DISTRIBUTION AND ASSIGNMENT	17
FUTURE BACKGROUND TRAFFIC	20
TOTAL TRAFFIC	20
TRAFFIC AND IMPROVEMENT ANALYSIS	25
INTERSECTION CAPACITY ANALYSIS	25
QUEUE LENGTH ANALYSIS	30
SIGHT DISTANCE ANALYSIS	31
CONCLUSIONS	33
LIST OF REFERENCES	36
TECHNICAL APPENDIX	37

LIST OF TABLES

Table 1: Level of Service Criteria	12
Table 2: Existing Peak Hour Levels of Service	13
Table 3: Trip Generation Summary	16
Table 4: Site Trip Distribution	17
Table 5: Growth Rate Expansion Factors	20
Table 6: 2020 Peak Hour Analysis	25
Table 7: 2025 Peak Hour Analysis	27
Table 8: Queue Storage Lengths	30
Table 9: AASHTO Sight Distance Requirements	31
LIST OF FIGURES	
Figure 1 - Vicinity Map	5
Figure 2 - Existing Lane Configurations and Stop Control	9
Figure 3 - Existing Traffic Volumes	11
Figure 4 - Site Plan and Access	15
Figure 5 - Trip Distribution	18
Figure 6 - Site Generated Traffic Volumes	19
Figure 7 - 2020 Background Traffic Volumes	21
Figure 8 - 2025 Background Traffic Volumes	22
Figure 9 - 2020 Total Traffic Volumes	23
Figure 10 - 2025 Total Traffic Volumes	24
Figure 11 - Proposed Lane Configurations and Traffic Control	29

EXECUTIVE SUMMARY

This report documents a traffic impact analysis performed for the proposed Smoke Tree Resort south of Lincoln Road between Mockingbird Lane and Scottsdale Road in the Town of Paradise Valley. The proposed development will consist of maximum of 120 hotel rooms and a maximum of 30 residential units of 1,200 SF each above the hotel rooms, of which 15 will have a lock-off feature.

CivTech, Inc. has been retained by Beus Gilbert PLLC to perform the traffic impact study for the proposed redevelopment. The purpose of this assessment is to address the traffic and transportation impacts of the proposed development on the surrounding streets and intersections.

The following conclusions have been documented in this study.

General

 The proposed development is anticipated to generate approximately 1,032 weekday daily trips, with 69 trips occurring in the AM peak hour and 101 trips occurring in the PM peak hour.

Existing Conditions

- The results of the existing conditions analysis indicates that all intersections currently operate at an overall acceptable level of service (LOS D or better), with the exception of the intersections of Apartment Driveway & Lincoln Drive and AJ's Driveway & Lincoln Drive under the existing lane configurations.
 - The intersections of Apartment Driveway & Lincoln Drive and AJ's Driveway & Lincoln Drive experience delays in the northbound left turn approach and southbound left turn. Both of these approaches and driveways are driveways for AJ's Fine Foods and existing Apartments. It is possible that a raised median will be installed along the length of Lincoln Drive.

Opening Year 2020

- The results of the 2020 opening year Synchro analysis indicates that all study intersections are anticipated to experience an acceptable level of service, with the exception of the following intersections:
 - The intersection of **Mockingbird Lane & Lincoln Drive** is expected to experience delay on the northbound and southbound approaches during the no build and the full build scenario. By increasing the southbound left turn phase from 9 seconds to 19 seconds and changing the northbound left turn phase from permissive to permissive-protected, the southbound approach delay is expected to decrease from 56 seconds per vehicle to 55.1 seconds per vehicle during the AM peak hour and decrease from 58.7 seconds per vehicle to 55.4 seconds per vehicle during the PM peak hour. The northbound approach delay is expected to decrease from 48 seconds per vehicle to 43.3 seconds per vehicle during the AM peak hour and decrease from 58.7 seconds per vehicle to 57.3 seconds per vehicle

1

- in the PM peak hour, which is very close to what is considered an acceptable level of service.
- The intersections of Apartment Driveway & Lincoln Drive and AJ's Driveway & Lincoln Drive experience delays in the northbound left turn approach and southbound left turn. Both of these approaches and driveways are driveways for AJ's Fine Foods and the existing Lincoln Apartments. The addition of Smoke Tree Resort is not the cause of these delays, which remains consistent with the existing condition.
- The intersection of Scottsdale Road & Lincoln Drive is expected to experience delay on the eastbound and westbound approaches during both the AM and PM peak hours for both the no build and full build scenarios. The intersection is expected to operate at an overall acceptable level of service (LOS D or better) during both the AM and PM peak hours of both scenarios, however, the eastbound and westbound approach delay could be improved by increasing the eastbound phase from 30 seconds to 32 seconds and increasing the westbound phase from 13 seconds to 21 seconds. This change is expected to decrease the overall intersection delay from 46.4 seconds per vehicle to 25 seconds per vehicle in the AM peak and increase the overall intersection delay from 44.9 seconds per vehicle to 52.1 seconds per vehicle in the PM peak hour. Although the PM peak hour overall intersection delay is expected to increase, the individual approach delays for the eastbound and westbound decrease significantly. The eastbound approach is expected to decrease from 82.8 seconds per vehicle to 16 seconds per vehicle and the westbound approach is expected to decrease from 63.8 seconds per vehicle to 23.7 seconds per vehicle during the PM peak hour.
- The intersection of Quail Run Road and Access A reports a delay of zero seconds using the HCM 6th edition methodology. No LOS is reported in the included appendices, however zero seconds of delay would yield an LOS of A, shown in the table.

Horizon year 2025

- The results of the 2025 horizon year Synchro analysis summarized in Table 7 indicates that all study intersections are anticipated to experience an acceptable level of service, with the exception of the following intersections:
 - The intersections of Apartment Driveway & Lincoln Drive and AJ's Driveway & Lincoln Drive experience delays in the northbound left turn approach and southbound left turn. Both of these approaches and driveways are driveways for AJ's Fine Foods and the existing Lincoln Apartments. The addition of Smoke Tree Resort is not the cause of these delays, which remains consistent with the existing condition.
 - The intersection of Scottsdale Road & Lincoln Drive is expected to experience delay on the southbound, eastbound and westbound approaches during both the AM and PM peak hours for both the no build

2

and full build scenarios. By decreasing the cycle length from 130 seconds to 120 seconds and optimizing the green times, the overall intersection delay is expected to decrease from 76 seconds per vehicle to 58.2 seconds per vehicle during the AM peak hour and decrease from 62.7 seconds per vehicle to 57.7 seconds per vehicle during the PM peak hour. Although this mitigation measure is expected to decrease the approach delays and the overall intersection delay, if this signal is coordinated with any others along Scottsdale Road, changing the cycle length will interfere with the coordination and would not be recommended. The City of Scottsdale has stated that they have plans to change the eastbound approach configuration to dual left turn lanes and a shared through/right turn lane. It is not known when this change will occur, but it could improve the delay if the intersection is retimed.

The intersection of Quail Run Road and Access A reports a delay of zero seconds using the HCM 6th edition methodology. No LOS is reported in the included appendices, however zero seconds of delay would yield an LOS of A, shown in the table.

Queue Storage and Sight Distance

- According to the CivTech study done for the Ritz Carlton, the newly signalized intersection of Quail Run Road and Lincoln Drive will have eastbound/westbound left turn lanes and a westbound right turn lane striped with 150 feet of storage each. While 150 feet is being proposed due to the current development agreement with Five Star Development for the Ritz Carlton, less is required to meet the recommended AASHTO length. The recommended storage lengths are provided for horizon year 2025 using the total traffic projections.
 - The Smoke Tree Resort is requesting a new full access driveway located approximately 80 feet west of the eastern most property line. The Town of Paradise Valley has stated that an eastbound right turn deceleration lane is required at this driveway. Using AASHTO methodology only 25 feet of storage is required, however, 50 feet is the minimum that should be recommended per AASHTO standards with a 90 foot taper.
- There are no existing obstructions to sight distance within the project intersections or along the included corners of the proposed intersection. Adequate site distance must be provided at the intersections to allow safe left and right turning movements from the development
 - The contractor should ensure that sight visibility is provided at all proposed intersections according to the distances and that sight triangles at public intersections are maintained according to the Town Code. All vegetation and trees should be maintained according to Town of Paradise Valley regulations.

INTRODUCTION

Smoke Tree Resort is currently 26 individual suites and bungalows. The site is being redeveloped and is proposed as a hotel with a maximum of 120 hotel rooms and a maximum of 30 residential units of 1,200 SF each above the hotel rooms, of which 15 will have a lock-off feature. The site is located on the south side of Lincoln Drive between Mockingbird Lane and Scottsdale road.

Study Requirements

This study analyzes the traffic impact due to the proposed development on the surrounding street network. The study will be prepared in conformance with the Town of Paradise Valley's Traffic Impact Analysis (TIA) Criteria and Traffic Impact Statement (TIS) Criteria, May 2015. The specific objectives of the study are:

- To determine whether the planned street system in the vicinity of the site is adequate to accommodate the increased traffic that results from the proposed development.
- ◆ To recommend additional street improvements or traffic control devices, where necessary, and to mitigate the additional site-generated traffic

Study Area

This study is classified as a Category 1 TIA meaning the study area is defined as all signalized and major unsignalized intersections within a $\frac{1}{4}$ -mile radius of the site. The following study area intersections have been evaluated:

- Mockingbird Lane & Lincoln Drive
- Quail Run Road & Lincoln Drive
- Smoke Tree Driveway West & Lincoln Drive
- Smoke Tree Driveway East & Lincoln Drive
- Medical Office Driveway West & Lincoln Drive
- Medical Office Driveway East & Lincoln Drive
- Apartment Driveway & Lincoln Drive
- AJ's Driveway & Lincoln Drive
- Scottsdale Road & Lincoln Drive

Horizon Years

Per the study requirements, a Category 1 Traffic Impact and Mitigation Analysis is required. Analysis will be conducted on the current conditions, the opening year and opening plus five years.

It is assumed that development will open in October 2020. For purposes of this study, the development will be assumed fully built out by 2020. Therefore, the analysis years to be analyzed for this study include opening year 2020 and horizon year 2025. A location map of the study area is provided in **Figure 1**.

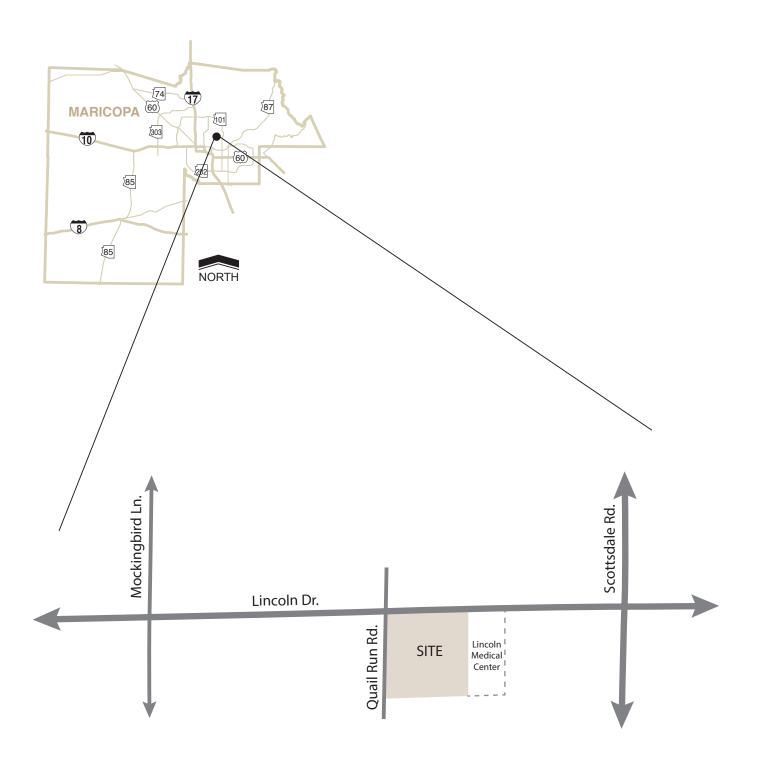


Figure 1: Vicinity Map

EXISTING CONDITIONS

SURROUNDING LAND USE

The surrounding area includes various land uses. Directly north of the site, on the north side of Lincoln Drive, is the site for the new Ritz Carlton luxury hotel. Bordering the site to the east is the site for the proposed Lincoln Medical Center expansion. West of the site are detached single-family homes. Northeast of the site is the Lincoln Scottsdale, multi-family apartment homes. Also within the vicinity of the site are many retail shops and restaurants.

EXISTING ROADWAY NETWORK

The existing roadway network analyzed in this study includes Mockingbird Lane, Lincoln Drive. Quail Run Road and Scottsdale Road.

Mockingbird Lane is a north-south three-lane road with one lane in each travelling direction and a continuous two-way-left-turn lane north of Lincoln Drive, and a two-lane road south of Lincoln Drive. Mockingbird Lane begins at the intersection with McDonald Road and continues north for approximately 2 miles before terminating at the intersection with Northern Avenue. The posted speed limit is 35 miles per hour (mph).

Lincoln Drive is an east-west four-lane road with two lanes in each travelling direction. Within the vicinity of the site, there are raised medians along portions of the road. Lincoln Drive begins just east of the State Route 51 freeway and continues east for approximately 7 miles before terminating at the intersection with Cattletrack Road, just west of the Arizona Canal. The posted speed limit is 40 mph within the vicinity of the site.

Quail Run Road is a north-south two-lane road with one lane in each travelling direction. Quail Run Road begins just north of a private property south of the site and continues north for approximately 0.15 miles before terminating at the intersection with Lincoln Drive. There is no posted speed limit.

Scottsdale Road is a north-south six-lane road with three lanes in each travelling direction within the vicinity of the site. There are broken, raised medians along the whole length of road. Scottsdale Road begins at the intersection with Rio Salado Parkway and continues north for approximately 18 miles before terminating at the intersection with Carefree Highway. The posted speed limit is 45 mph.

EXISTING INTERSECTION CONFIGURATION

The intersection of **Mockingbird Lane and Lincoln Drive** is a four-legged signalized intersection with protected left turns on the southbound and westbound approaches. The northbound and southbound approaches each have one dedicated left turn lane and a shared through and right turn lane. The eastbound and westbound approaches each have one dedicated left turn lane, one through lane, and one shared through and right turn lane. There are pedestrian crosswalks across all legs of the intersection.

The intersection of **Quail Run Road and Lincoln Drive** is a four-legged, stop-controlled intersection with free movements in the east and west directions. The northbound approach has one shared left turn/through/right turn lane. The eastbound approach has one through lane and one shared through and right turn lane. The westbound approach has two through lanes and a break in the median to allow for dedicated left turns. The southbound approach is currently a construction access point with one shared left turn/through/right turn lane.

The intersection of **Smoke Tree Driveway West and Lincoln Drive** is a three-legged, stop-controlled "T" intersection with free movements in the east and west directions. The northbound approach has one shared left turn and right turn lane. The eastbound approach has one through lane and one shared through and right turn lane. The westbound approach has two through lanes and a break in the median to allow for dedicated left turns.

The intersection of **Smoke Tree Driveway East and Lincoln Drive** is a three-legged, stop-controlled "T" intersection with free movements in the east and west directions. The northbound approach has one shared left turn and right turn lane. The eastbound approach has one through lane and one shared through and right turn lane. The westbound approach has two through lanes and a break in the median to allow for dedicated left turns.

The intersection of **Medical Office Driveway West and Lincoln Drive** is a three-legged, stop-controlled "T" intersection with free movements in the east and west directions. The northbound approach has one shared left turn and right turn lane. The eastbound approach has one through lane and one shared through and right turn lane. The westbound approach has two through lanes and a break in the median to allow for dedicated left turns.

The intersection of **Medical Office Driveway East and Lincoln Drive** is a three-legged, stop-controlled "T" intersection with free movements in the east and west directions. The northbound approach has one shared left turn and right turn lane. The eastbound approach has one through lane and one shared through and right turn lane. The westbound approach has two through lanes and a break in the median to allow for dedicated left turns.

The intersection of **Apartment Driveway and Lincoln Drive** is a four-legged, stop-controlled intersection with free movements in the east and west directions. The southbound approach consists of one dedicated left turn lane and one dedicated right turn lane. The eastbound approach consists of a two-way-left turn lane one through lane and one shared through and right turn lane. The northbound approach consists of one shared left turn and right turn lane. The westbound approach consists of a two-way left turn lane, on through lane and one shared through and right turn lane.

The intersection of **AJ's Driveway and Lincoln Drive** is a four-legged, stop-controlled intersection with free movements in the east and west directions. The northbound approach has one shared left turn and right turn lane. The eastbound approach has a

two-way-left-turn lane, one through lane and one shared through and right turn lane. The southbound approach has one dedicated left turn lane and one dedicated right turn lane. The westbound approach has a dedicated left turn lane, one through lane and one shared through and right turn lane.

The intersection of **Scottsdale Road and Lincoln Drive** is a four-legged signalized intersection with split phasing on the eastbound and westbound approaches and protected left turns on the northbound and southbound approaches. The northbound approach has two dedicated left turn lanes, two through lanes and one shared through and right turn lane. The westbound approach has one dedicated left turn lane, one through lane and one shared through and right turn lane. The southbound approach has one dedicated left turn lane, three through lanes and one dedicated right turn lane. The eastbound approach has one dedicated left turn lane, one shared left turn and through lane and one dedicated right turn lane. There are pedestrian cross walks across all legs of the intersection.

The existing intersection configurations and traffic control is illustrated in Figure 2.

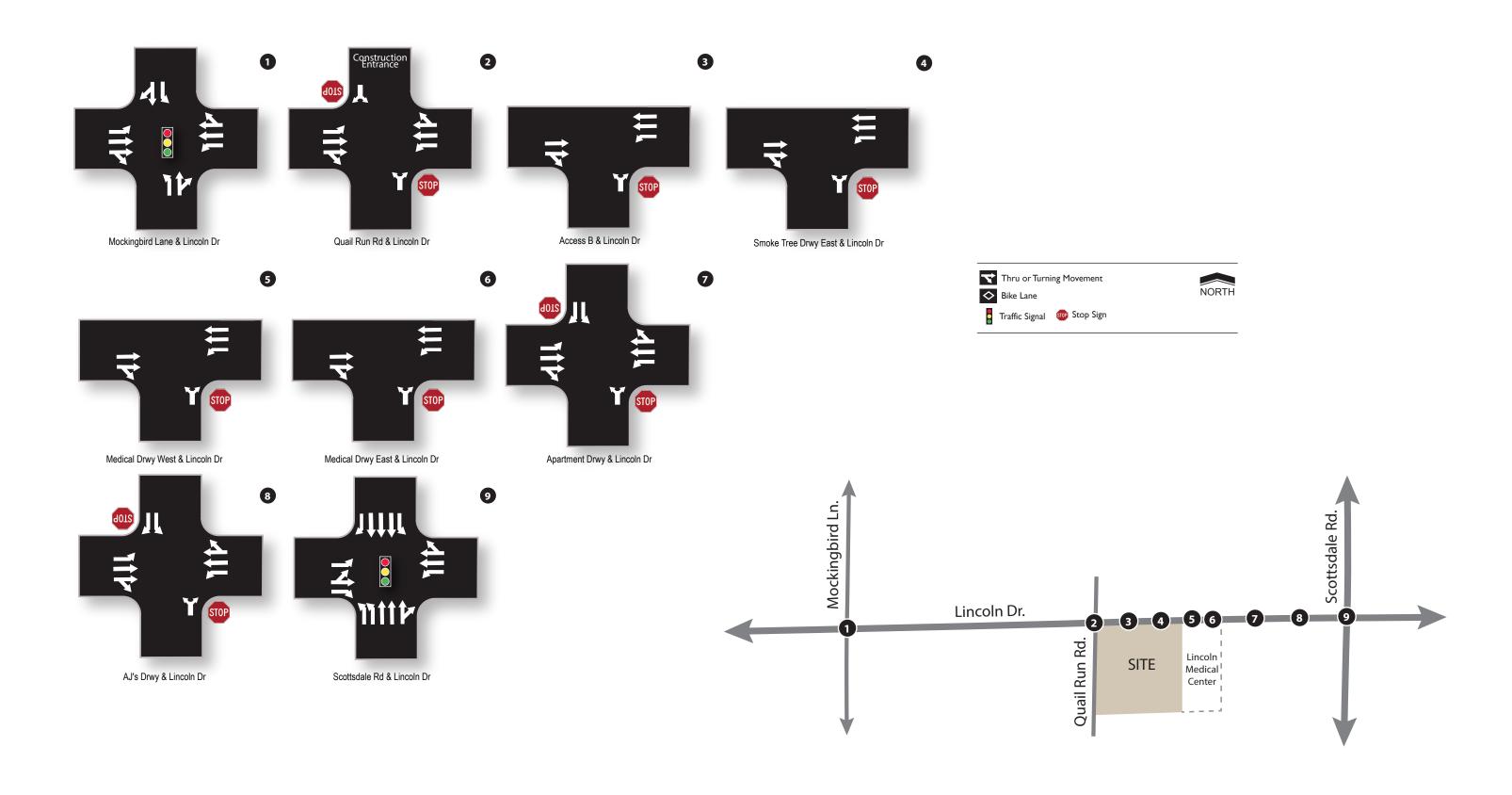


Figure 2: Existing Lane Configurations and Traffic Controls

EXISTING TRAFFIC VOLUMES

CivTech engaged Field Data Services of Arizona, Inc. to record traffic volumes at nine study intersections within the project vicinity. Peak hour volume turning movement counts were performed from 7:00-9:00 AM and 4:00-6:00 PM on Thursday, May 31, 2018. Peak hour turning movement counts were conducted at the following study intersections:

- Mockingbird Lane & Lincoln Drive
- Quail Run Road & Lincoln Drive
- Smoke Tree Driveway West & Lincoln Drive
- Smoke Tree Driveway East & Lincoln Drive
- Medical Office Driveway West & Lincoln Drive
- Medical Office Driveway East & Lincoln Drive
- Apartment Driveway & Lincoln Drive
- AJ's Driveway & Lincoln Drive
- Scottsdale Road & Lincoln Drive

The Town of Paradise Valley requires that a seasonal adjustment factor be applied to existing traffic counts taken outside of typical months. These traffic counts were conducted in May, and summer months typically have lower amounts of traffic due to school not being in session. The seasonal adjustment factor for the month of May is 1.01, however since they were conducted on the last day of the month, the adjustment factor for the month of June will be used to be more conservative. The seasonal adjustment factor for June is 1.03, this was applied to all traffic within the study area. Existing 2018 traffic volumes with the seasonal adjustment factor applied are presented in **Figure 3** for the weekday AM and PM peak hours. Raw traffic volume data obtained for this study have been included in **Appendix B**.

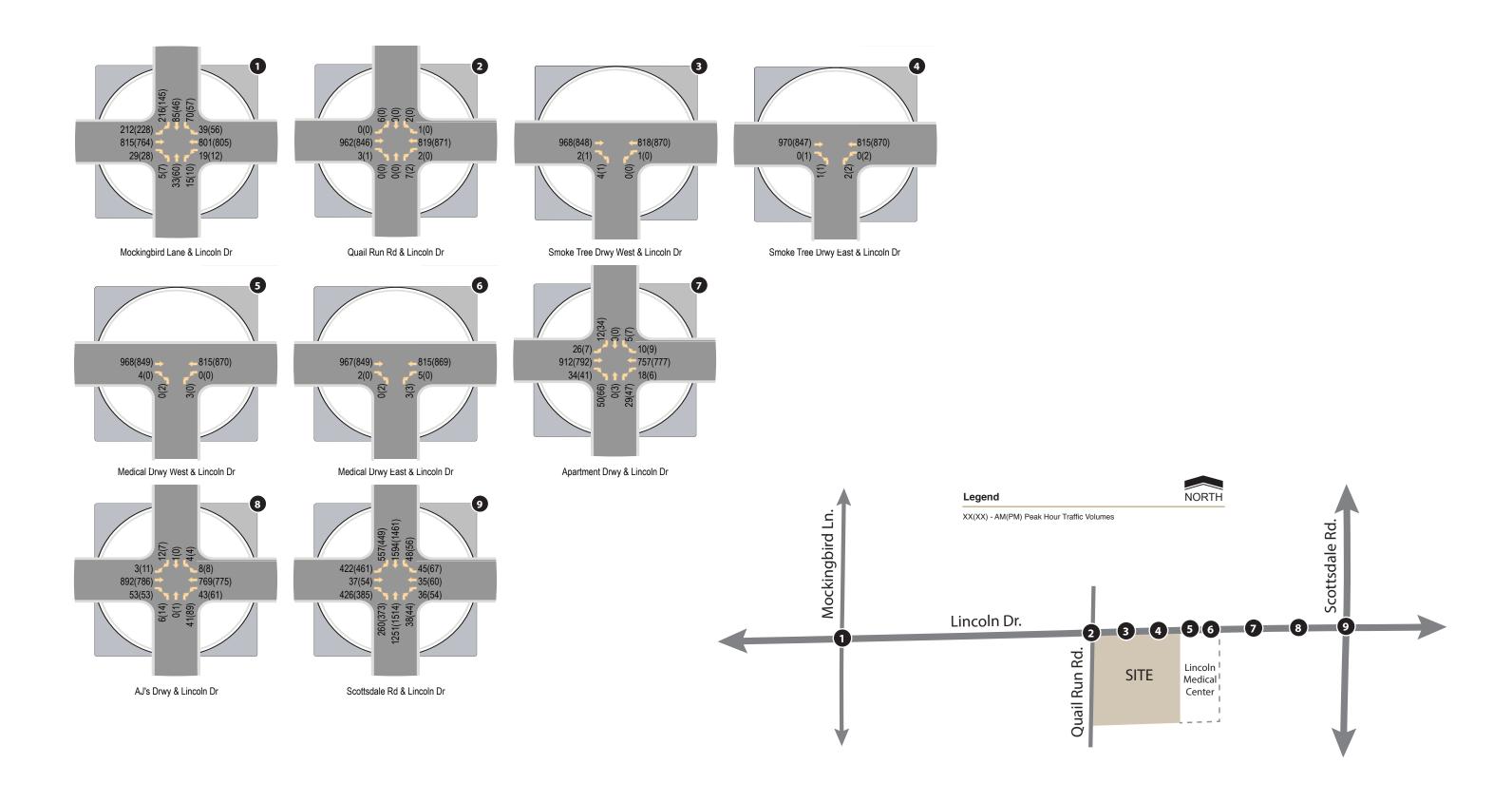


Figure 3: Seasonally Adjusted Existing Traffic Volumes

EXISTING CAPACITY ANALYSIS

Peak hour capacity analyses have been conducted for the study intersections based on existing intersection configurations and traffic volumes. All intersections have been analyzed using the methodologies presented in the *Highway Capacity Manual (HCM), Special Report 209,* and Updated 2016 and using Synchro software, version 10.0 under the HCM 6th edition methodology.

The concept of level of service (LOS) uses qualitative measures that characterize operational conditions within the traffic stream. The individual levels of service are described by factors that include speed, travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. Six levels of service are defined for each type of facility for which analysis procedures are available. They are given letter designations A through F, with LOS A representing the best operating conditions and LOS F the worst. Each level of service represents a range of operating conditions. Levels of service for intersections are defined in terms of delay ranges. **Table 1** lists the level of service criteria for signalized and unsignalized intersections, respectively.

Table 1: Level of Service Criteria

Lovel of Comice	Control Delay (seconds/vehicle)					
Level of Service	Signalized Intersections	Unsignalized Intersections				
Α	≤ 10	≤ 10				
В	> 10-20	> 10-15				
С	> 20-35	> 15-25				
D	> 35-55	> 25-35				
E	> 55-80	> 35-50				
F	> 80	> 50				

Source: Exhibit 19-8, Exhibit 20-2, Exhibit 21-8 and Exhibit 22-8, Highway Capacity Manual 2017

Synchro 10.0 software calculates the LOS per the HCM 6th edition methodology. The 6th edition HCM documents the signalized LOS calculation methodology which takes into account lane geometry, traffic volumes and cycle length/phasing to compute LOS. Synchro analysis worksheets report individual movement delay/LOS and overall delay/LOS for signalized intersections; unsignalized intersection worksheets report the worst-case delay/LOS and the average overall intersection delay. Signal timing data for the intersection of Mockingbird Lane and Lincoln Drive was provided by the Town of Paradise Valley. Timing for the intersection of Scottsdale Road and Lincoln Drive was provided by the City of Scottsdale. Results of the existing level of service analyses are shown in **Table 2** for both AM and PM peak hours. The existing conditions analysis worksheets have been included in **Appendix C**.

Table 2: Existing Peak Hour Levels of Service

ID	Intersection	Intersection Control	Approach/ Movement	Existing LOS AM (PM)
			NB	D(E)
			SB	E(E)
1	Mockingbird Lane & Lincoln Drive	Signal	EB	B(A)
	3	J	WB	B(B)
			Overall	C(B)
			NB Shared	B(B)
2	Quail Run Road & Lincoln Drive	2-way stop	SB Shared	C(A)
	Quali Ruli Road & Lincolli Dilve	(NB/SB)	EB Left	A(A)
			WB Left	B(A)
3	Smoke Tree Driveway West &	1-way stop	NB Shared	C(C)
3	Lincoln Drive	(NB)	WB Left	B(A)
4	Smoke Tree Driveway East &	1-way stop	NB Shared	C(B)
4	Lincoln Drive	(NB)	WB Left	A(A)
5	Medical Driveway West & Lincoln	1-way stop	NB Shared	B(C)
5	Drive	(NB)	WB Left	A(A)
6	Medical Driveway West & Lincoln	1-way stop	NB Shared	B(C)
O	Drive	Drive (NB)		B(A)
			NB Shared	F(F)
	Apartment Drivousy 9 Lincoln	2 way atan	SB Left	F(E)
7	Apartment Driveway & Lincoln Drive	2-way stop	SB Right	B(B)
	Diive	(NB/SB)	EB Left	A(A)
			WB Left	B(A)
			NB Shared	C(D)
		2-way stop	SB Left	F(F)
8	AJ's Driveway & Lincoln Drive	(NB/SB)	SB Right	B(B)
		(140/30)	EB Left	A(A)
			WB Left	B(B)
			NB	C(C)
			SB	D(C)
9	Scottsdale Road & Lincoln Drive	Signal	EB	E(E)
			WB	E(F)
			Overall	D(D)

The results of the existing conditions analysis summarized in **Table 2** indicates that all intersections currently operate at an overall acceptable level of service (LOS D or better), with the exception of the intersections of Apartment Driveway & Lincoln Drive and AJ's Driveway & Lincoln Drive under the existing lane configurations depicted in **Figure 2**.

The intersections of **Apartment Driveway & Lincoln Drive and AJ's Driveway & Lincoln Drive** experience delays in the northbound left turn approach and southbound left turn. Both of these approaches and driveways are driveways for AJ's Fine Foods and existing Apartments. It is possible that a raised median will be installed along the length of Lincoln Drive.

PROPOSED DEVELOPMENT

SITE LOCATION

The proposed redevelopment will be located 7101 East Lincoln Drive in the Town of Paradise Valley, Arizona.

SITE ACCESS

There are three access points proposed for this development, described as follows:

- <u>Access A</u> is a proposed access from Quail Run Road to the Smoke Tree site.
 The intersection of Quail Run Road and Lincoln Drive will be signalized by build
 out year 2020, and it is expected that some vehicles will utilize Quail Run Road
 to access the Smoke Tree site. This access will be a full movement access on
 the western border of the site.
- <u>Access B</u> is a proposed full movement access point on Lincoln Drive located approximately 80 feet west of the eastern Smoke Tree property line. The two existing access points to the site will be removed and replaced with this single access.
- <u>Access C</u> is a proposed access from Quail Run Road to Smoke Tree south of the proposed Access A. This access is proposed to be full access, however, due to the location, it is unlikely that many vehicles will be using this driveway and therefore, it was not included in the analysis of this report.

The two existing Smoke Tree Driveways, intersections 3 and 4, will both be removed by opening year 2020 and replaces with a single, full movement access located approximately 80 feet west of the eastern property line.

The proposed site plan is provided in **Figure 4**.

Figure 4: Site Plan and Access

TRIP GENERATION

The potential trip generation for the proposed development was estimated utilizing the Institute of Transportation Engineers (ITE) *Trip Generation Manual*, 10th Edition and *Trip Generation Handbook*, 3rd Edition. The ITE *Trip Generation Manual* contains data collected by various transportation professionals for a wide range of different land uses. The data are summarized in the report and average rates and equations have been established that correlate the relationship between an independent variable that describes the development size and generated trips for each categorized land use. The report provides information for daily and peak hour trips.

Since the Smoke Tree Resort is a proposed redevelopment of the current resort, some of the existing traffic counts are existing trips generated by the site. To be conservative, these trips were not subtracted from the existing traffic counts, meaning that there will actually be less "new trips" then mentioned in this study.

The proposed development will consist of a maximum of 120 standard hotel rooms, 30 residential units/condos, 15 lock-off units that will be owned by individuals and rented out to the public, and a 3,500 square foot quality restaurant. The lock-off residential units have been included in the analysis as part of the total hotel room count to present a worst-case scenario where all rooms have been rented at the same time. They have been included in the hotel room count since it is assumed that the owners of each unit will not use this as their primary residence and will rent it out to guests. The restaurant will be on the resort site, but is not intended to serve guests of the resort completely. An internal capture reduction reduces the number of external trips being made to the site. It is assumed that approximately 50% of all visitors to the restaurant will be off site and the other 50% will be guests and residents of the resort. The hotel is not a standard hotel, ITE land use code 310, nor would it be considered a resort hotel, ITE land use code 330. Custom trip rates were established by averaging the trip rates for a standard hotel and a resort hotel for the AM and PM peak hours as well as the daily trips. Table 3 depicts the trip generation summary for the proposed development. Trip generation calculations are provided in Appendix D.

Table 3: Trip Generation Summary

				Weekday Trips						
				Daily		AN	1		PN	I
Proposed Use	ITE LUC	Size	Units	Total	In	Out	Total	In	Out	Total
Hotel	310/330	135	Rooms	700	38	15	53	29	39	68
Condos	220	30	Dwelling Units	186	3	12	15	13	7	20
Quality Restaurant	931	3,500	SF	294	0	3	3	18	9	27
	Total Trips				41	30	71	60	55	115
Internal Capture Reduction (Quality Restaurants 50%)				(148)	(0)	(2)	(2)	(9)	(5)	(14)
		•	Subtotals	1,032	41	28	69	51	50	101

As shown in **Table 3**, the proposed development is anticipated to generate approximately 1,032 weekday daily trips, with 69 trips occurring in the AM peak hour and 101 trips occurring in the PM peak hour.

TRIP DISTRIBUTION AND ASSIGNMENT

A single trip distribution pattern was assumed for the proposed development. It is expected that the resort development will generate trips based on future population within a 7-mile radius of the site. Future total population within a 7-mile radius of the site, as predicted by the 2020/2030 socio-economic data compiled by the Maricopa Association of Governments (MAG), was used as a basis to estimate trip distribution for the resort development

The resulting trip distribution percentages for the study area are shown in **Table 4**. The trip distribution calculations are included in **Appendix E**.

Direction (To/From)	Trip Distribution
North on Mockingbird Ln	6%
South on Mockingbird Ln	4%
West on Lincoln Dr	25%
North on Scottsdale Rd	35%
South on Scottsdale Rd	30%
Total	100%

Table 4: Site Trip Distribution

Figure 5 illustrates the trip distribution percentages shown in **Table 4** on the existing roadway network with the study area. The percentages presented in **Figure 5** were applied to the site trips generated to determine the AM and PM peak hour site traffic at the intersections within the study area. The resulting site generated traffic for the proposed development are presented in **Figure 6**.

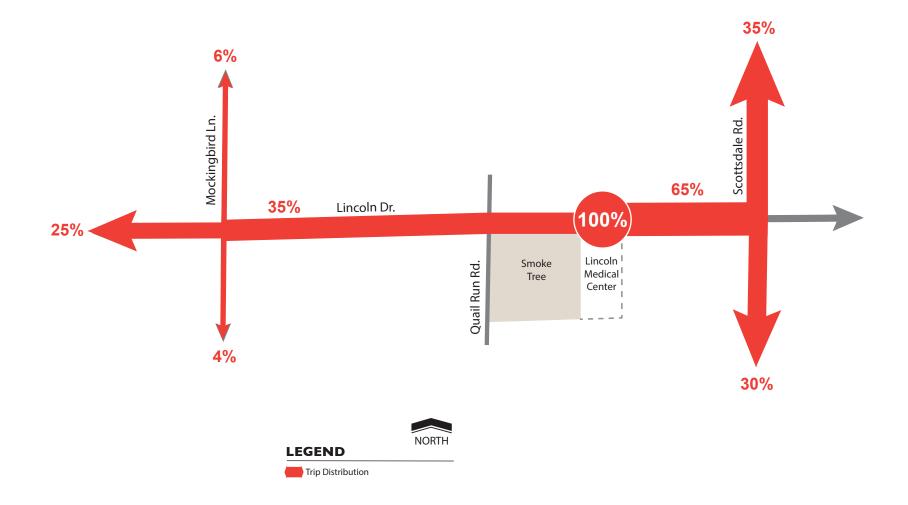


Figure 5: Trip Distribution

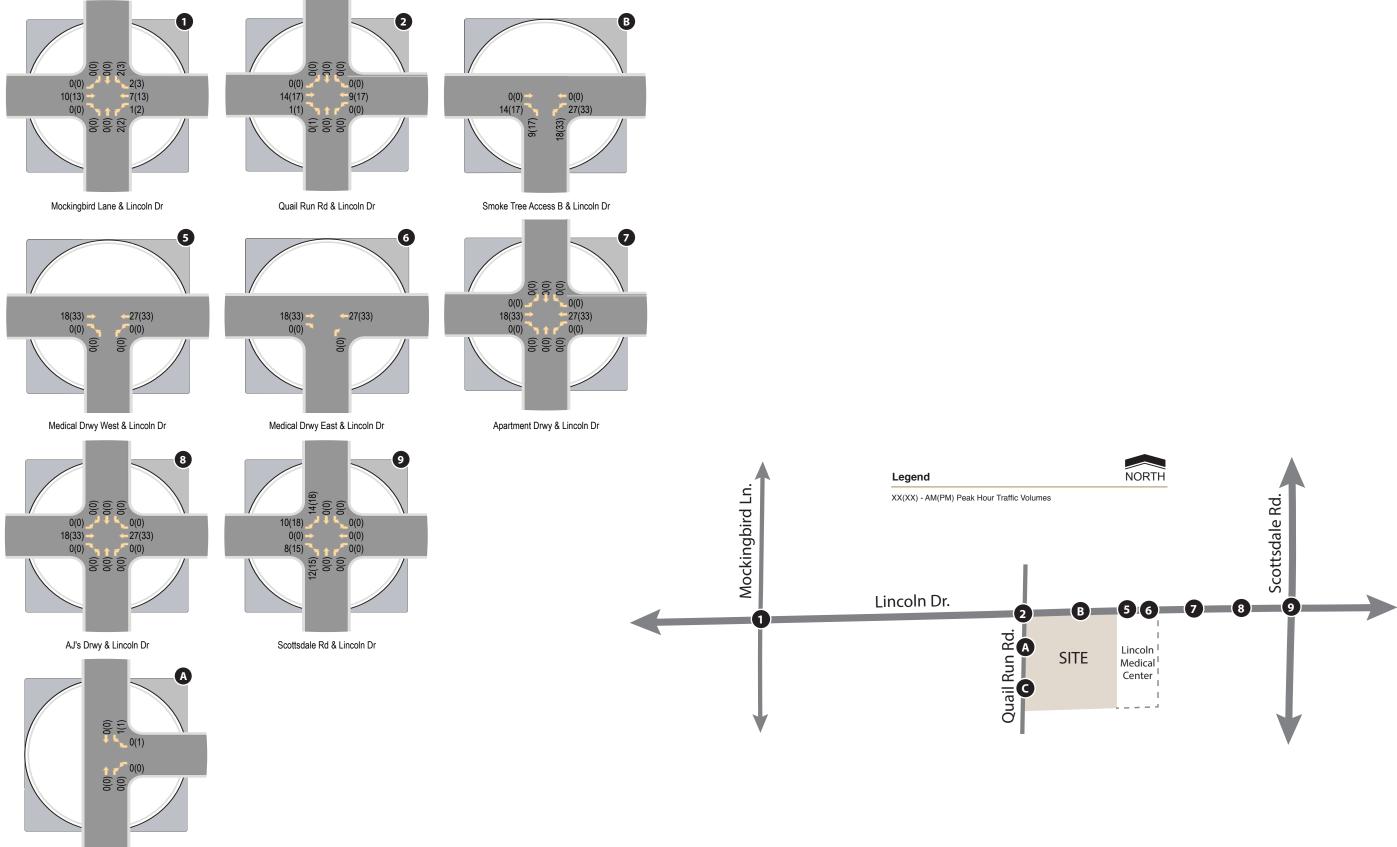


Figure 6: Site Generated Traffic Volumes

FUTURE BACKGROUND TRAFFIC

CivTech applied a growth rate to the seasonally adjusted traffic counts for this study in order to obtain the background traffic volumes along the adjacent roadway network. In reviewing the City of Scottsdale Traffic Counts Map, a 1.7% average growth rate was found within the proposed study area. **Table 5** shows the expansion factors used for the proposed opening year 2020 and horizon year 2025.

Table 5: Growth Rate Expansion Factors

Horizon Year	Expansion Factor
2020	1.034
2025	1.125

Applying the growth rate expansion factors to the seasonally adjusted existing traffic volumes predicts the volume of traffic anticipated on the surrounding area roads for opening year 2020 and horizon year 2025. Directly north of the proposed Smoke Tree Resort is the new Ritz Carlton Resort. Phase 1 of that development is expected to be open by 2020, meaning that it will be adding some site generated trips to the surrounding roadway network. Since CivTech was the company that performed the analysis for the Ritz Carlton in 2015, the site generated volumes expected for 2020 and 2025 were added to the grown existing volumes. Directly east of the proposed site is another proposed development, Lincoln Medical Center. It is expected that the Lincoln Medical expansion and the Smoke Tree Resort will begin and end construction at roughly the same time. Lincoln Medical Center is also expected to add additional traffic to the surrounding roadway network. The proposed site generated trips were assigned to the surrounding roadway network, and these trips were also added to the grown existing volumes.

The same methodology was used for both horizon years. Calculated background traffic for opening year 2020 and horizon year 2025 is presented in **Figure 7** and **Figure 8**, respectively. Seasonally adjusted existing traffic volumes, Ritz Carlton site volumes, Smoke Tree site volumes and more detailed background traffic calculations are included in **Appendix F**.

TOTAL TRAFFIC

Total traffic was determined by adding the site generated traffic to the projected background traffic. Total peak hour traffic volumes for the opening year 2020 and horizon year 2025 are shown in **Figure 9** and **Figure 10**, respectively.

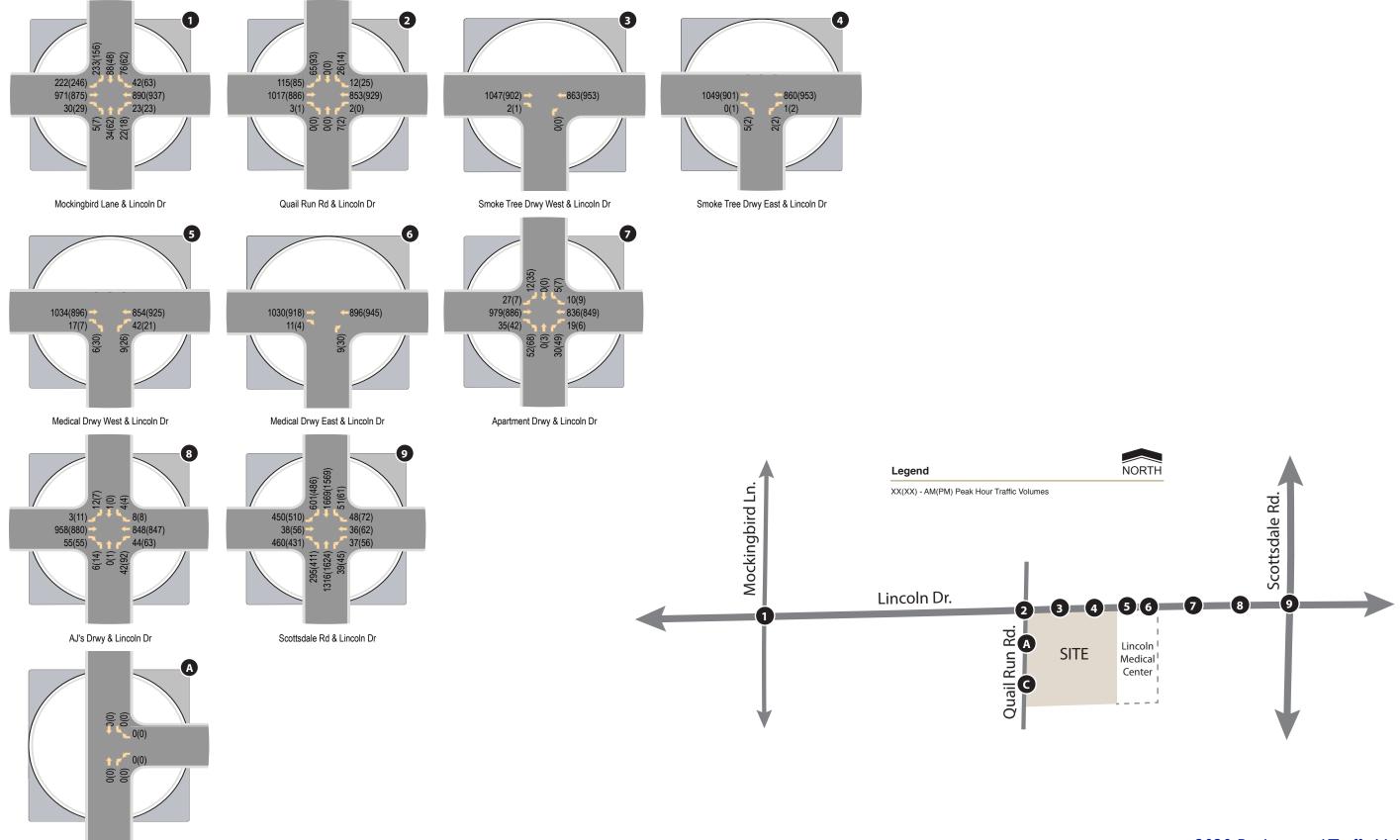


Figure 7: 2020 Background Traffic Volumes

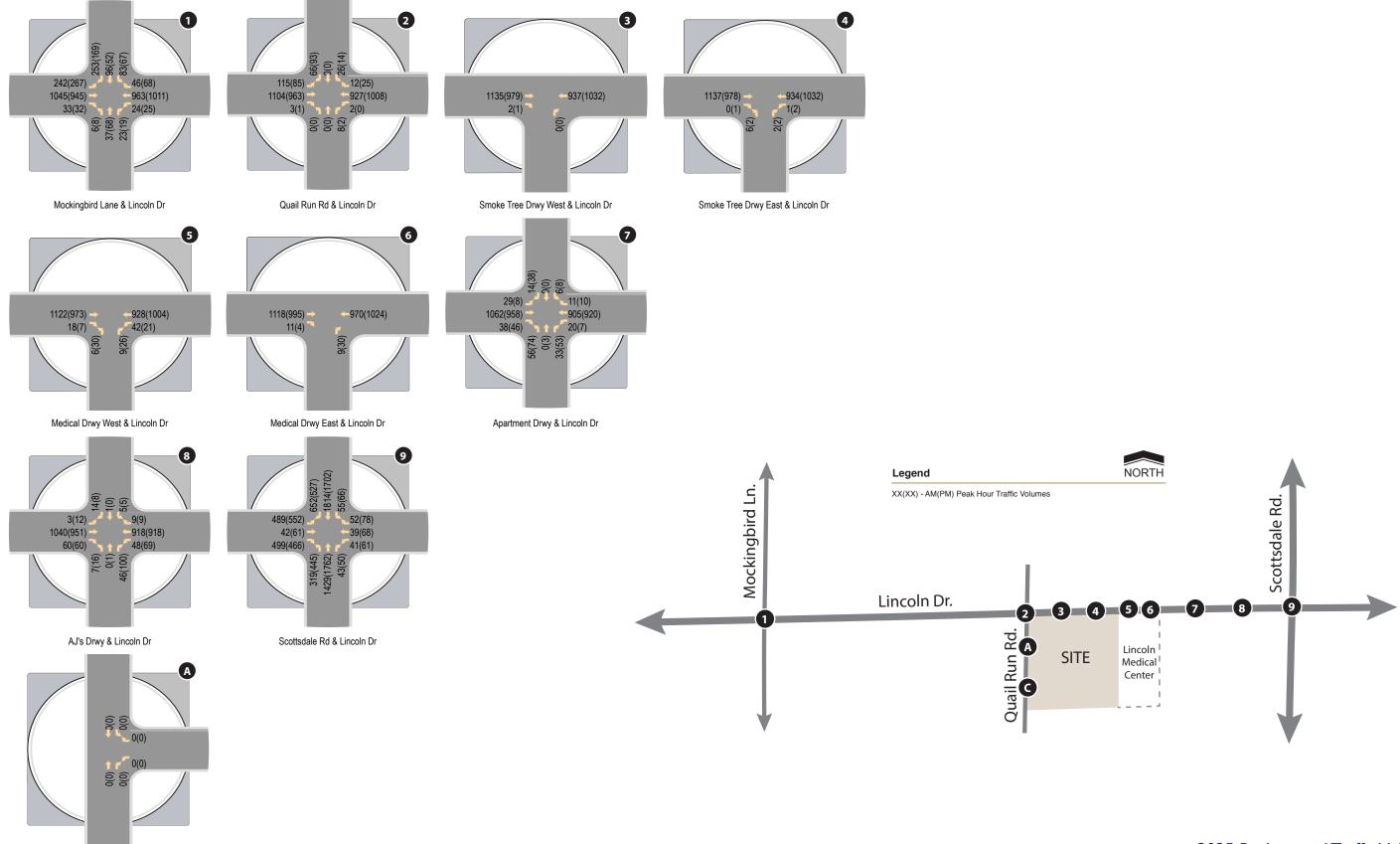


Figure 8: 2025 Background Traffic Volumes

Figure 9: 2020 Total Traffic Volumes

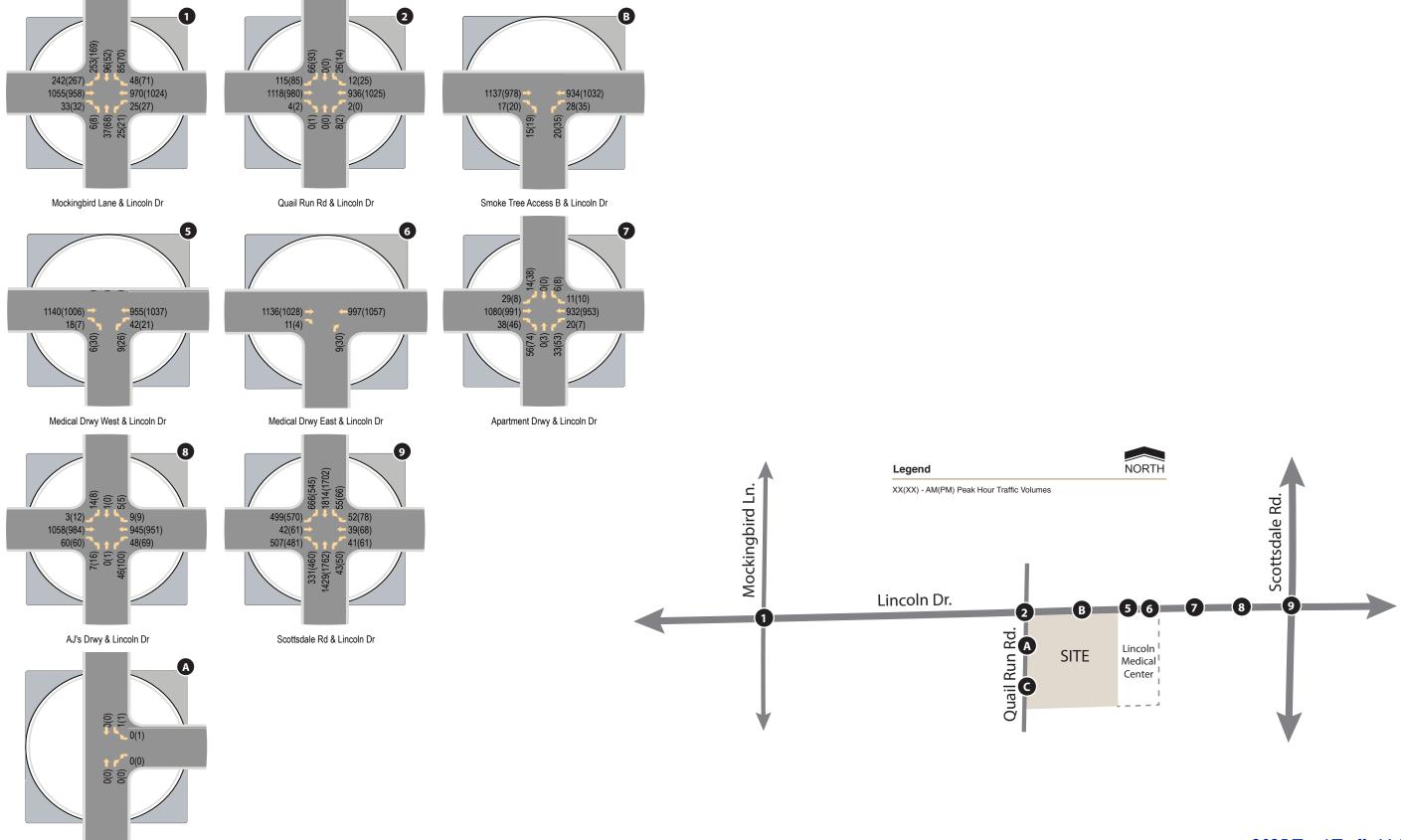


Figure 10: 2025 Total Traffic Volumes

TRAFFIC AND IMPROVEMENT ANALYSIS

INTERSECTION CAPACITY ANALYSIS

Peak hour capacity analyses have been conducted for all of the intersections within the study area. All study area intersections were analyzed using Synchro 10.0 analysis software and the methodologies previously presented. Signalized intersections were analyzed with signal timing presented by the Town of Paradise Valley and the City of Scottsdale. According to the City of Scottsdale, the intersection of Scottsdale Road & Lincoln Drive will be restriped in the future to operate with dual left turn lanes and a shared through/right turn lane. It is unknown by what year these improvements will be made, so all analysis will be conducted using the existing lane configurations. The overall intersection and approach levels of service are summarized in **Table 6** for the 2020 opening year and **Table 7** for the 2025 horizon. Detailed analysis worksheets can be found in **Appendix G** and **Appendix H**.

Table 6: 2020 Peak Hour Analysis

		Intersection	Approach/	2020 LOS AM(PM)		
ID	Intersection	Control	Movement	No-Build	Build	Mitigated
1	Mockingbird Ln & Lincoln Dr	Signal	NB SB EB WB	D(E) E(E) B(A) B(A)	D(E) E(E) B(A) B(A)	D(D) E(E) B(B) C(B)
			Overall	C(B)	C(B)	C(B)
2	Quail Run Rd & Lincoln Dr	Signal	NB SB EB WB Overall	B(B) B(B) B(A) D(D) C(C)	B(B) B(B) B(A) D(D) C(C)	[Not Mitigated]
3	Smoke Tree Drwy West & Lincoln Dr	1-way stop (NB)	NB Shared/Right WB Left	A(A) A(A)	-(-) -(-)	[Not Mitigated]
4	Smoke Tree Drwy East & Lincoln Dr	1-way stop (NB)	NB Shared WB Left	C(C) B(B)	-(-) -(-)	[Not Mitigated]
5	Medical Drwy West & Lincoln Dr	1-way stop (NB)	NB Shared WB Left	C(C) B(B)	C(C) B(B)	[Not Mitigated]
6	Medical Drwy East & Lincoln Dr	1-way stop (NB)	NB Shared/Right WB Left	B(B) B(A)	B(B) B(A)	[Not Mitigated]
7	Apartment Drwy & Lincoln Dr	2-way Stop (NB/SB)	NB Shared SB Left SB Right EB Left WB Left	F(F) F(F) B(B) B(B) B(B)	F(F) F(F) B(B) B(B) B(B)	[Not Mitigated]
8	AJ's Drwy & Lincoln Dr	2-way Stop (NB/SB)	NB Shared SB Left SB Right EB Left WB Left	C(D) F(F) B(B) B(B) B(B)	C(E) F (F) B(B) B(B) B(B)	[Not Mitigated]
9	Scottsdale Rd & Lincoln Dr	Signal	NB SB EB WB Overall	C(C) D(D) F(E) E(F) D(D)	C(C) D(D) F(E) E(F)	D(D) E(E) E(E) E(E)
А	Quail Run Rd & Access A	1-way stop (WB)	SB Left WB Right	-(-) -(-)	A(A) A(A)	[Not Mitigated]

		Intersection	Approach/	2020 LOS AM(PM)		
ID	Intersection	Control	Movement	No-Build	Build	Mitigated
В	Smoke Tree Access B & Lincoln Dr	1-way stop (NB)	NB Shared WB Left	-(-) -(-)	C(C) B(B)	[Not Mitigated]

The results of the 2020 opening year Synchro analysis summarized in **Table 6** indicates that all study intersections are anticipated to experience an acceptable level of service, with the exception of the following intersections:

The intersection of **Mockingbird Lane & Lincoln Drive** is expected to experience delay on the northbound and southbound approaches during the no build and the full build scenario. By increasing the southbound left turn phase from 9 seconds to 19 seconds and changing the northbound left turn phase from permissive to permissive-protected, the southbound approach delay is expected to decrease from 56 seconds per vehicle to 55.1 seconds per vehicle during the AM peak hour and decrease from 58.7 seconds per vehicle to 55.4 seconds per vehicle during the PM peak hour. The northbound approach delay is expected to decrease from 48 seconds per vehicle to 43.3 seconds per vehicle during the AM peak hour and decrease from 58.7 seconds per vehicle to 57.3 seconds per vehicle in the PM peak hour, which is very close to what is considered an acceptable level of service.

The intersections of Apartment Driveway & Lincoln Drive and AJ's Driveway & Lincoln Drive experience delays in the northbound left turn approach and southbound left turn. Both of these approaches and driveways are driveways for AJ's Fine Foods and the existing Lincoln Apartments. The addition of Smoke Tree Resort is not the cause of these delays, which remains consistent with the existing condition.

The intersection of **Scottsdale Road & Lincoln Drive** is expected to experience delay on the eastbound and westbound approaches during both the AM and PM peak hours for both the no build and full build scenarios. The intersection is expected to operate at an overall acceptable level of service (LOS D or better) during both the AM and PM peak hours of both scenarios, however, the eastbound and westbound approach delay could be improved by increasing the eastbound phase from 30 seconds to 32 seconds and increasing the westbound phase from 13 seconds to 21 seconds. This change is expected to decrease the overall intersection delay from 46.4 seconds per vehicle to 25 seconds per vehicle in the AM peak and increase the overall intersection delay from 44.9 seconds per vehicle to 52.1 seconds per vehicle in the PM peak hour. Although the PM peak hour overall intersection delay is expected to increase, the individual approach delays for the eastbound and westbound decrease significantly. The eastbound approach is expected to decrease from 82.8 seconds per vehicle to 16 seconds per vehicle and the westbound approach is expected to decrease from 63.8 seconds per vehicle to 23.7 seconds per vehicle during the PM peak hour.

The intersection of **Quail Run Road and Access A** reports a delay of zero seconds using the HCM 6th edition methodology. No LOS is reported in the included appendices, however zero seconds of delay would yield an LOS of A, shown in the table.

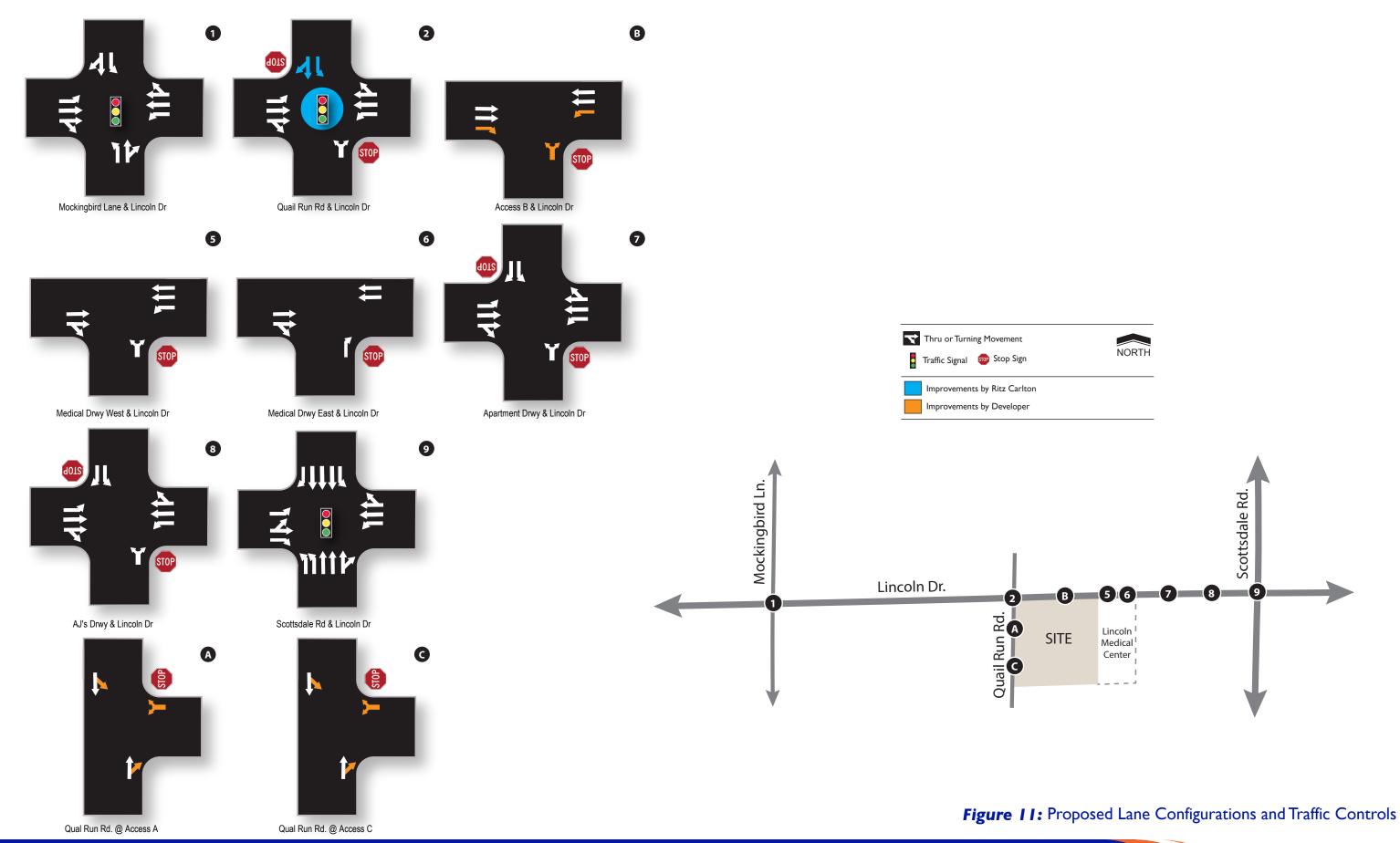
The signal timing proposed for the 2020 mitigated scenario was applied to the 2025 horizon year.

Table 7: 2025 Peak Hour Analysis

		Intersection	Approach/	202	25 LOS AM(F	PM)
ID	Intersection	Control	Movement	No-Build	Build	Mitigated
1	Mockingbird Ln & Lincoln Dr	Signal	NB SB EB WB Overall	D(E) E (E) B(A) C(B)	D(D) E(E) C(B) D(C)	[Not Mitigated]
2	Quail Run Rd & Lincoln Dr	Signal	NB SB EB WB Overall	B(B) B(C) A(A) D(D) C(C)	B(B) B(B) B(A) D(C) C(B)	[Not Mitigated]
3	Smoke Tree Drwy West & Lincoln Dr	1-way stop (NB)	NB Shared/Right WB Left	A(A) A(A)	-(-) -(-)	[Not Mitigated]
4	Smoke Tree Drwy East & Lincoln Dr	1-way stop (NB)	NB Shared WB Left	C(C) B(B)	-(-) -(-)	[Not Mitigated]
5	Medical Drwy West & Lincoln Dr	1-way stop (NB)	NB Shared WB Left	C(C) B(B)	C(C) B(B)	[Not Mitigated]
6	Medical Drwy East & Lincoln Dr	1-way stop (NB)	NB Shared/Right WB Left	B(B) B(A)	B(B) B(A)	[Not Mitigated]
7	Apartment Drwy & Lincoln Dr	2-way Stop (NB/SB)	NB Shared SB Left SB Right EB Left WB Left	F(F) F(F) B(B) B(B) B(B)	F(F) F(F) B(B) B(B) B(B)	[Not Mitigated]
8	AJ's Drwy & Lincoln Dr	2-way Stop (NB/SB)	NB Shared SB Left SB Right EB Left WB Left	D(F) F(F) B(B) B(B) B(B)	D(F) F (F) B(B) B(B) B(B)	[Not Mitigated]
9	Scottsdale Rd & Lincoln Dr	Signal	NB SB EB WB Overall	C(D) D(D) F(F) E(F) D(D)	D(D) F(E) F(E) E(E)	D(E) E(D) E(E) E(E)
Α	Quail Run Rd & Access A	1-way stop (WB)	SB Left WB Right	-(-) -(-)	A(A) A(A)	[Not Mitigated]
В	Smoke Tree Access B & Lincoln Dr	1-way stop (NB)	NB Shared WB Left	-(-) -(-)	C(C) B(B)	[Not Mitigated]

The results of the 2025 horizon year Synchro analysis summarized in **Table 7** indicates that all study intersections are anticipated to experience an acceptable level of service, with the exception of the following intersections:

The intersection of **Mockingbird Lane & Lincoln Drive** is expected to have delay on the southbound approach during the AM and PM peak hours of both the no build and full build scenario. The delay is due to the volume of southbound right turning vehicles, however the approach delay is 55.4 seconds per vehicle during the AM peak hour of the full build scenario and 56.2 seconds per vehicle during the PM peak hour, which is lower than the no build scenario and very close to the threshold for an acceptable level of service (LOS D or better).


The intersections of **Apartment Driveway & Lincoln Drive and AJ's Driveway & Lincoln Drive** experience delays in the northbound left turn approach and southbound left turn. Both of these approaches and driveways are driveways for AJ's Fine Foods and the existing Lincoln Apartments. The addition of Smoke Tree Resort is not the cause of these delays, which remains consistent with the existing condition.

The intersection of **Scottsdale Road & Lincoln Drive** is expected to experience delay on the southbound, eastbound and westbound approaches during both the AM and PM peak hours for both the no build and full build scenarios. By decreasing the cycle length from 130 seconds to 120 seconds and optimizing the green times, the overall intersection delay is expected to decrease from 76 seconds per vehicle to 58.2 seconds per vehicle during the AM peak hour and decrease from 62.7 seconds per vehicle to 57.7 seconds per vehicle during the PM peak hour. Although this mitigation measure is expected to decrease the approach delays and the overall intersection delay, if this signal is coordinated with any others along Scottsdale Road, changing the cycle length will interfere with the coordination and would not be recommended. The City of Scottsdale has stated that they have plans to change the eastbound approach configuration to dual left turn lanes and a shared through/right turn lane. It is not known when this change will occur, but it could improve the delay if the intersection is retimed.

The intersection of **Quail Run Road and Access A** reports a delay of zero seconds using the HCM 6th edition methodology. No LOS is reported in the included appendices, however zero seconds of delay would yield an LOS of A, shown in the table.

The proposed lane configurations are presented in **Figure 11**.

CivTech

QUEUE LENGTH ANALYSIS

Adequate turn storage should be supplied on any approach where turn lanes are permitted and/or warranted. A queuing analysis was performed for all warranted/recommended and existing intersection turn lanes where site traffic is expected as well as left turn lanes adjacent to the site. According to the methodology documented in *A Policy on Geometric Design of Highways and Streets* (the AASHTO "Green Book"), the storage length for a turn lane is typically estimated as the length required to hold the average number of arriving vehicles per two minutes, where unsignalized, or per one-and-a half signal cycles, where signalized. The formulas used for the calculations are shown below.

For signalized intersections, the storage length is determined by the following formula:

Storage Length = [1.5 x (veh/hr)/(cycles/hr)] x 25 feet

For unsignalized intersections, the storage length is determined by the following formula:

Storage Length = $[(veh/hr)/(30 periods/hr)] \times 25 feet$

Using the traffic volumes and lane configurations projected for the 2025 horizon year, the resulting turn lane storage for turn movements affiliated with the site using AASHTO guidelines were calculated with a 130-second cycle length and are summarized in **Table 8**. Calculations for the queue storage length recommendations are provided in **Appendix I.**

Queue Storage Intersection ID Existing (1) AASHTO 95th Percentile Recommended Intersection Control Movement NB Left 85' 25' 25' 85' Mockingbird Lane SB Left 130' 175' 95' 130' 1 Signalized ⁽⁴⁾145' & Lincoln Dr EB Left 145' 500' 235' WB Left 100' 50' 30' 100' EB Left 225' 155' 150' Quail Run Rd & 2 Signalized WB Left 25' 25' 150' Lincoln Dr WB Right 50' 150' NB Left (2)550° (2)850° (2)345° (2)550° SB Left 185' 125' 120' 185' Scottsdale Rd & EB Left 1,050' 500' ⁽⁴⁾175' 175' 9 Signalized Lincoln Dr WB Left 90' 125' 100' (5)90SB Right 315' 1,225' 275' (3)350" **EB** Right 175' 925' 350' ⁽⁴⁾175' Smoke Tree 1-way stop WB Left 50' 25' 50' В Access B & (NB) EB Right 25' 50' Lincoln Dr

Table 8: Queue Storage Lengths

¹ The American Association of Highway and Transportation Officials on pages 714-715 of its publication, *Geometric Design of Highways and Streets* ("AASHTO Green Book"), indicates that storage length for a turn lane, exclusive of taper, "should usually be based on one and one-half to two times the average number of vehicles that would store per cycle" at a signalized intersection.

⁽¹⁾ Measured from stop bar to end of storage length

⁽²⁾ Dual left turn lanes. Queue storage includes total storage length of both lanes

⁽³⁾ Max storage length recommended for signalized intersection

- (4) Extending this turn will interfere with left turns into AJ's Fine Foods driveway
- (5) Not the responsibility of the developer

According to the CivTech study done for the Ritz Carlton, the newly signalized intersection of Quail Run Road and Lincoln Drive will have eastbound/westbound left turn lanes and a westbound right turn lane striped with 150 feet of storage each. The recommended storage lengths in **Table 8** are provided for horizon year 2025 using the total traffic projections.

The Smoke Tree Resort is requesting a new full access driveway located approximately 80 feet west of the eastern most property line. The Town of Paradise Valley has stated that an eastbound right turn deceleration lane is required at this driveway. Using AASHTO methodology only 25 feet of storage is required, however, 50 feet is the minimum that should be recommended per AASHTO standards with a 90 foot taper. A minimum of 75 feet of storage is recommended for the right turn deceleration lane, however, if interference with other turn lanes is expected with the 75 foot storage length, 50 feet would be an acceptable storage length.

SIGHT DISTANCE ANALYSIS

Adequate sight distance must be provided at intersections and site access driveways to allow safe turning movements. There must be sufficient unobstructed sight distance along both approaches of a street/driveway intersection and across their included corners to allow operators of vehicles to see each other in time to prevent a collision.

The Town of Paradise Valley maintains sight distance requirements within their City Code, standard details and development services guidelines. The Town of Paradise Valley measures sight distance using AASHTO methodology except that the sight triangle from the driveway is measured from the center of the egress lane, 14.5 feet back from the curb return line. Sight distance calculations according to AASHTO guidelines are summarized in **Table 9**.

	Posted	Sight Distance Along Roadway			
Roadway	Speed Limit (mph)	Design Speed (mph)	Left of Driveway (Case B2/B3)	Right of Driveway (Case B1)	On Major Road (Case F)
Quail Run Rd & Access A	-	30	290'	335'	245'
Smoke Tree Access B & Lincoln Dr	40	45	860'	930'	795'
Quail Run Rd & Access C	1	30	290'	335'	245'

Table 9: AASHTO Sight Distance Requirements

There are no existing obstructions to sight distance within the project intersection or along the included corners of the proposed intersection. Adequate site distance must be provided at the intersections to allow safe left and right turning movements from the development. Recommended distances for these movements can be found in the table above.

The contractor should ensure that sight visibility is provided at all proposed intersections according to the distances shown in **Table 9** and that sight triangles at public

intersections are maintained according to the Town Code. All vegetation and trees should be maintained according to Town of Paradise Valley regulations. Sight distance worksheets have been included within **Appendix J**.

CONCLUSIONS

The following conclusions have been documented in this study.

General

 The proposed development is anticipated to generate approximately 1,032 weekday daily trips, with 69 trips occurring in the AM peak hour and 101 trips occurring in the PM peak hour.

Existing Conditions

- The results of the existing conditions analysis indicates that all intersections currently operate at an overall acceptable level of service (LOS D or better), with the exception of the intersections of Apartment Driveway & Lincoln Drive and AJ's Driveway & Lincoln Drive under the existing lane configurations.
 - The intersections of Apartment Driveway & Lincoln Drive and AJ's Driveway & Lincoln Drive experience delays in the northbound left turn approach and southbound left turn. Both of these approaches and driveways are driveways for AJ's Fine Foods and existing Apartments. It is possible that a raised median will be installed along the length of Lincoln Drive.

Opening Year 2020

- The results of the 2020 opening year Synchro analysis indicates that all study intersections are anticipated to experience an acceptable level of service, with the exception of the following intersections:
 - The intersection of **Mockingbird Lane & Lincoln Drive** is expected to experience delay on the northbound and southbound approaches during the no build and the full build scenario. By increasing the southbound left turn phase from 9 seconds to 19 seconds and changing the northbound left turn phase from permissive to permissive-protected, the southbound approach delay is expected to decrease from 56 seconds per vehicle to 55.1 seconds per vehicle during the AM peak hour and decrease from 58.7 seconds per vehicle to 55.4 seconds per vehicle during the PM peak hour. The northbound approach delay is expected to decrease from 48 seconds per vehicle to 43.3 seconds per vehicle during the AM peak hour and decrease from 58.7 seconds per vehicle to 57.3 seconds per vehicle in the PM peak hour, which is very close to what is considered an acceptable level of service.
 - The intersections of Apartment Driveway & Lincoln Drive and AJ's Driveway & Lincoln Drive experience delays in the northbound left turn approach and southbound left turn. Both of these approaches and driveways are driveways for AJ's Fine Foods and the existing Lincoln Apartments. The addition of Smoke Tree Resort is not the cause of these delays, which remains consistent with the existing condition.

- o The intersection of Scottsdale Road & Lincoln Drive is expected to experience delay on the eastbound and westbound approaches during both the AM and PM peak hours for both the no build and full build scenarios. The intersection is expected to operate at an overall acceptable level of service (LOS D or better) during both the AM and PM peak hours of both scenarios, however, the eastbound and westbound approach delay could be improved by increasing the eastbound phase from 30 seconds to 32 seconds and increasing the westbound phase from 13 seconds to 21 seconds. This change is expected to decrease the overall intersection delay from 46.4 seconds per vehicle to 25 seconds per vehicle in the AM peak and increase the overall intersection delay from 44.9 seconds per vehicle to 52.1 seconds per vehicle in the PM peak hour. Although the PM peak hour overall intersection delay is expected to increase, the individual approach delays for the eastbound and westbound decrease significantly. The eastbound approach is expected to decrease from 82.8 seconds per vehicle to 16 seconds per vehicle and the westbound approach is expected to decrease from 63.8 seconds per vehicle to 23.7 seconds per vehicle during the PM peak hour.
- The intersection of Quail Run Road and Access A reports a delay of zero seconds using the HCM 6th edition methodology. No LOS is reported in the included appendices, however zero seconds of delay would yield an LOS of A, shown in the table.

Horizon year 2025

- The results of the 2025 horizon year Synchro analysis summarized in Table 7 indicates that all study intersections are anticipated to experience an acceptable level of service, with the exception of the following intersections:
 - The intersections of Apartment Driveway & Lincoln Drive and AJ's Driveway & Lincoln Drive experience delays in the northbound left turn approach and southbound left turn. Both of these approaches and driveways are driveways for AJ's Fine Foods and the existing Lincoln Apartments. The addition of Smoke Tree Resort is not the cause of these delays, which remains consistent with the existing condition.
 - The intersection of **Scottsdale Road & Lincoln Drive** is expected to experience delay on the southbound, eastbound and westbound approaches during both the AM and PM peak hours for both the no build and full build scenarios. By decreasing the cycle length from 130 seconds to 120 seconds and optimizing the green times, the overall intersection delay is expected to decrease from 76 seconds per vehicle to 58.2 seconds per vehicle during the AM peak hour and decrease from 62.7 seconds per vehicle to 57.7 seconds per vehicle during the PM peak hour. Although this mitigation measure is expected to decrease the approach delays and the overall intersection delay, if this signal is coordinated with any others along Scottsdale Road, changing the cycle length will interfere with the coordination and would not be recommended. The City of

- Scottsdale has stated that they have plans to change the eastbound approach configuration to dual left turn lanes and a shared through/right turn lane. It is not known when this change will occur, but it could improve the delay if the intersection is retimed.
- The intersection of Quail Run Road and Access A reports a delay of zero seconds using the HCM 6th edition methodology. No LOS is reported in the included appendices, however zero seconds of delay would yield an LOS of A, shown in the table.

Queue Storage and Sight Distance

- According to the CivTech study done for the Ritz Carlton, the newly signalized intersection of Quail Run Road and Lincoln Drive will have eastbound/westbound left turn lanes and a westbound right turn lane striped with 150 feet of storage each. While 150 feet is being proposed due to the current development agreement with Five Star Development for the Ritz Carlton, less is required to meet the recommended AASHTO length. The recommended storage lengths are provided for horizon year 2025 using the total traffic projections.
 - The Smoke Tree Resort is requesting a new full access driveway located approximately 80 feet west of the eastern most property line. The Town of Paradise Valley has stated that an eastbound right turn deceleration lane is required at this driveway. Using AASHTO methodology only 25 feet of storage is required, however, 50 feet is the minimum that should be recommended per AASHTO standards with a 90 foot taper.
- There are no existing obstructions to sight distance within the project intersections or along the included corners of the proposed intersection. Adequate site distance must be provided at the intersections to allow safe left and right turning movements from the development
 - The contractor should ensure that sight visibility is provided at all proposed intersections according to the distances and that sight triangles at public intersections are maintained according to the Town Code. All vegetation and trees should be maintained according to Town of Paradise Valley regulations.

LIST OF REFERENCES

Highway Capacity Manual. Transportation Research Board, Washington, D.C., 2000.

Manual on Uniform Traffic Control Devices. U.S. Department of Transportation, Federal Highways Administration, Washington, D.C., 2009.

Roadway Design Manual, Maricopa County Department of Transportation, Phoenix, Arizona, Revised April 2004.

Trip Generation Manual, 10th Edition, Institute of Transportation Engineers, Washington, D.C., 2016.

Trip Generation Handbook, 3nd *Edition*, Institute of Transportation Engineers, Washington, D.C., 2016.

Ritz Carlton Master Plan, Paradise Valley Traffic Impact Analysis (TIA), CivTech, Scottsdale, AZ, March 2016.

Lincoln Medical Center, Paradise Valley Traffic Impact Analysis (TIA), CivTech, Scottsdale, AZ, November 2018.

TECHNICAL APPENDIX

APPENDIX A: REVIEW COMMENTS AND RESPONSES

APPENDIX B: EXISTING TRAFFIC COUNTS

APPENDIX C: EXISTING PEAK HOUR ANALYSIS

APPENDIX D: TRIP GENERATION

APPENDIX E: TRIP DISTRIBUTION

APPENDIX F: BACKGROUND TRAFFIC

APPENDIX G: 2020 PEAK HOUR ANALYSIS

APPENDIX H: 2025 PEAK HOUR ANALYSIS

APPENDIX I: QUEUE STORAGE ANALYSIS

APPENDIX J: SIGHT DISTANCE ANALYSIS

APPENDIX A

REVIEW COMMENTS AND RESPONSES

Smoke Tree Resort 2ns Submittal

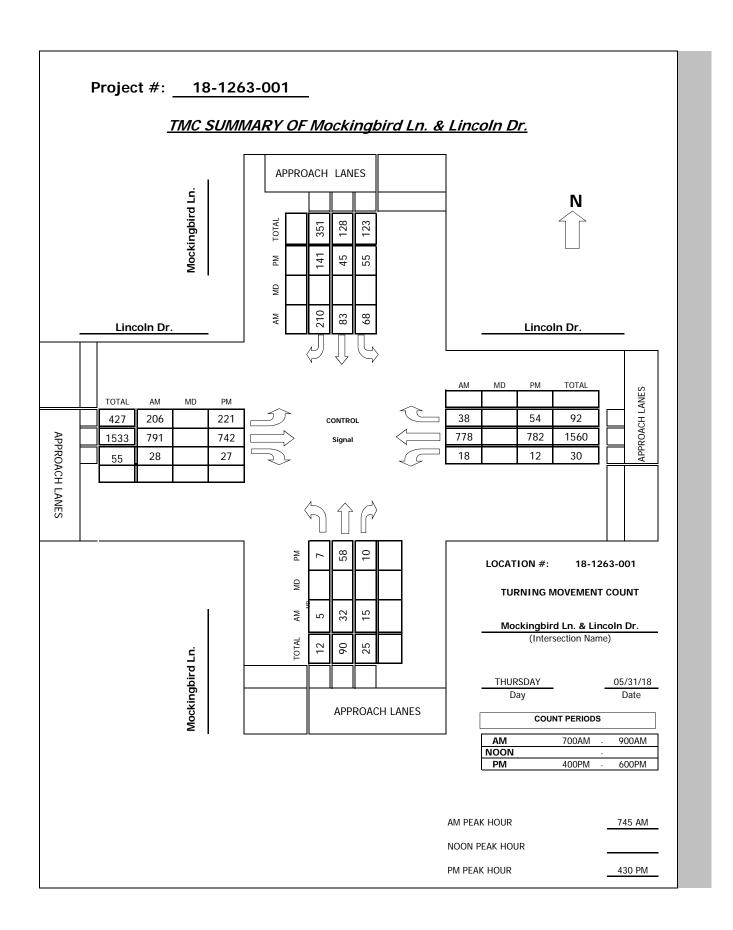
CivTech, Inc.

Review Comments & Responses

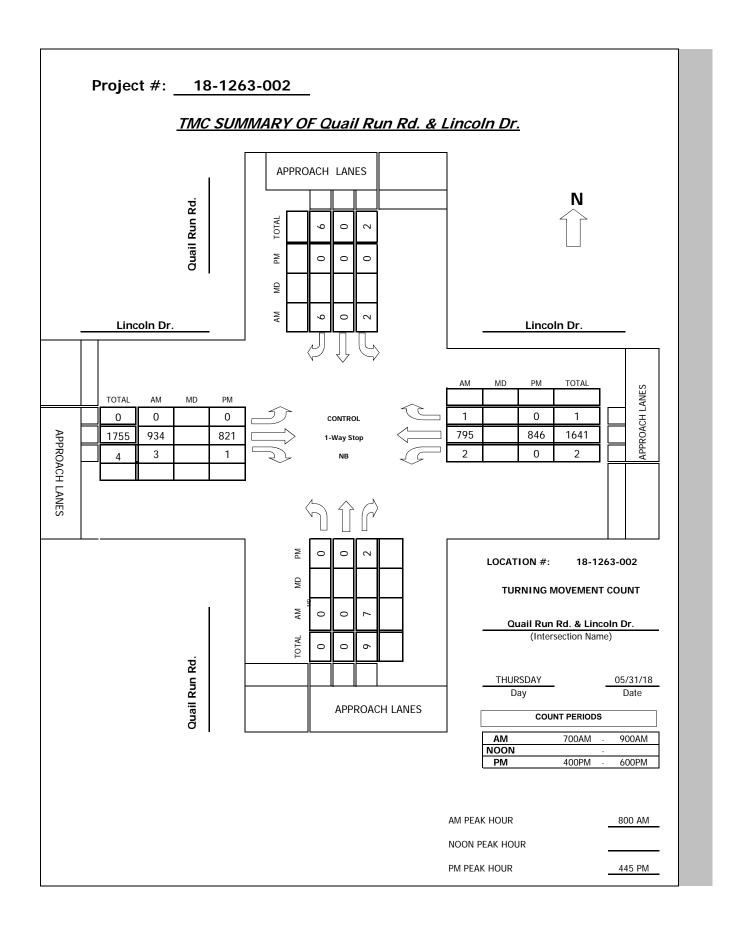
Disposition Codes: (1) Will Comply (2) Will Evaluate (3) Delete Comment (4) Defer to Consultant/Owner

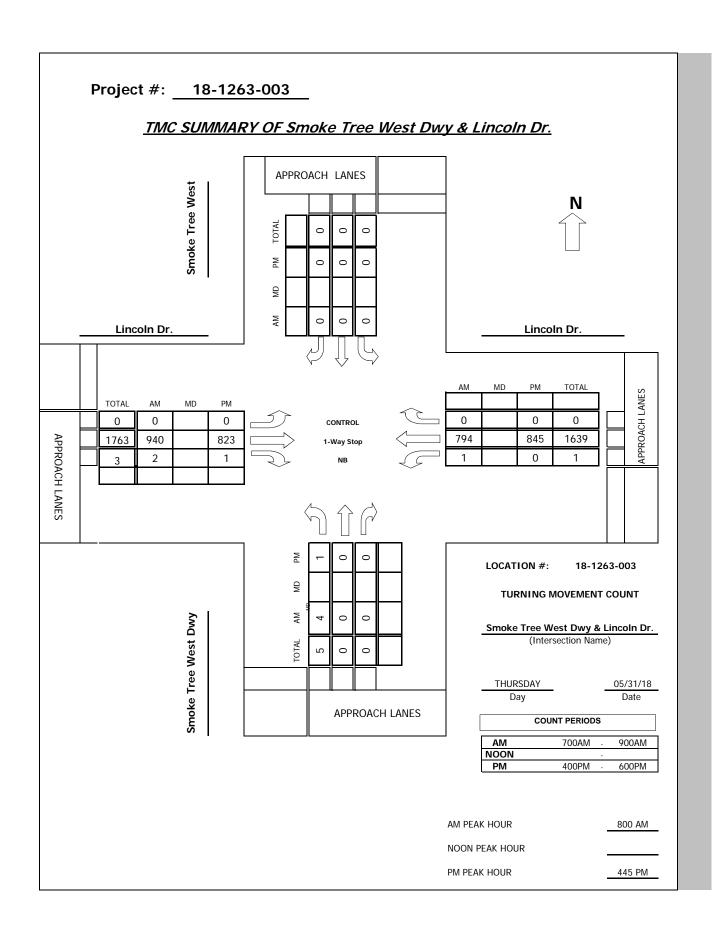
Reviewer Name, Agency: Paul Mood, Town of Paradise Valley

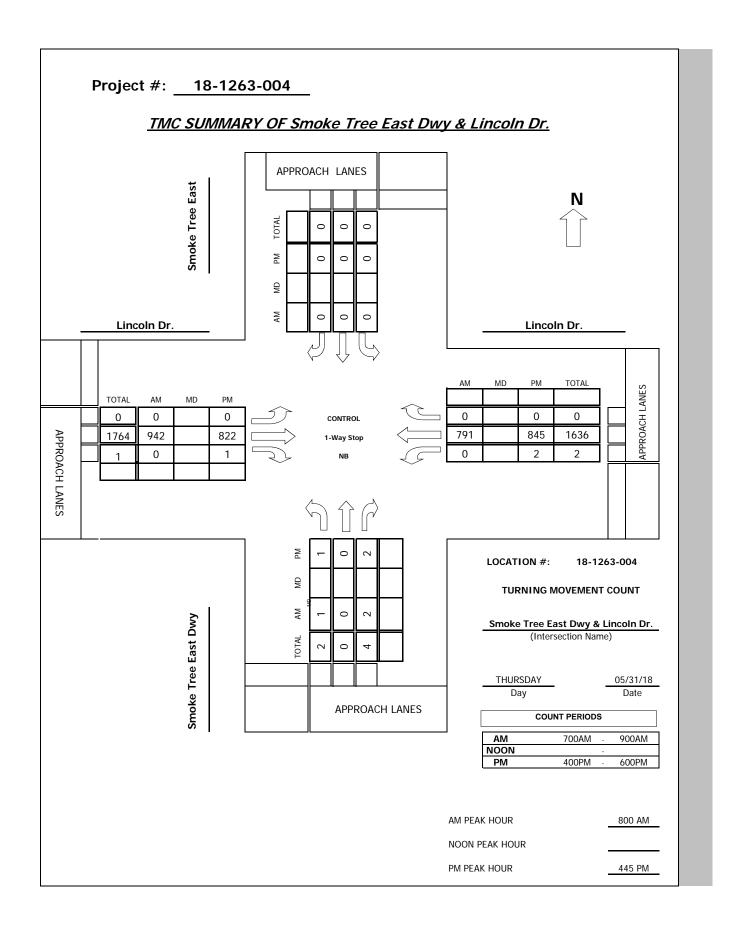
Item	Review Comment	(Code) & Response
1.	Applicant shall assume staff's recommendation for access onto Lincoln	(1) The analysis and report text have been updated to reflect the change
	Drive which includes 65 feet of right-of-way, eliminated both existing	in access from the two existing driveways on Lincoln Drive to a single,
	driveways and adds a right turn deceleration lane and shared use	full movement, shared driveway with Lincoln Medical Center. However,
	driveway with the Lincoln Medical Plaza approximately 80 feet west of	Lincoln Medical site traffic was not added to this shared driveway, but
	the eastern property line. The TIA should be updated accordingly	instead kept at their two existing driveways, per the instruction of the
		Town of Paradise Valley.
2.	A cross access easement with the Lincoln Medical Plaza shall be	(2) Cross access may be included in the site design, but for the purpose
	required	of this study, Lincoln Medical site generated traffic was not assumed to
		be using the shared access, but instead kept their two original driveways.
	Update existing speed limit on Lincoln Drive from 35 mph to 40 mph in	(1) Speed limit for Lincoln Drive has been updated from 35 mph to 40
	existing conditions and sight distance analysis sections	mph

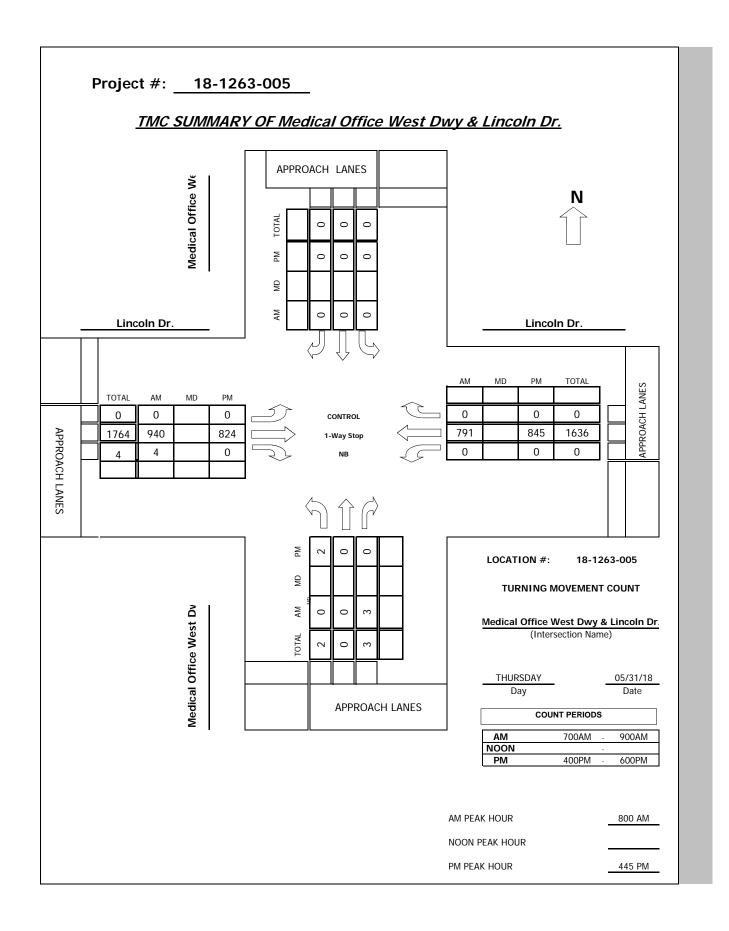

Reviewed Date: 01/03/201! CivTech Received Date: 02/08/201! CivTech Entered Date: 02/11/201! CivTech Response Date: 02/11/201!

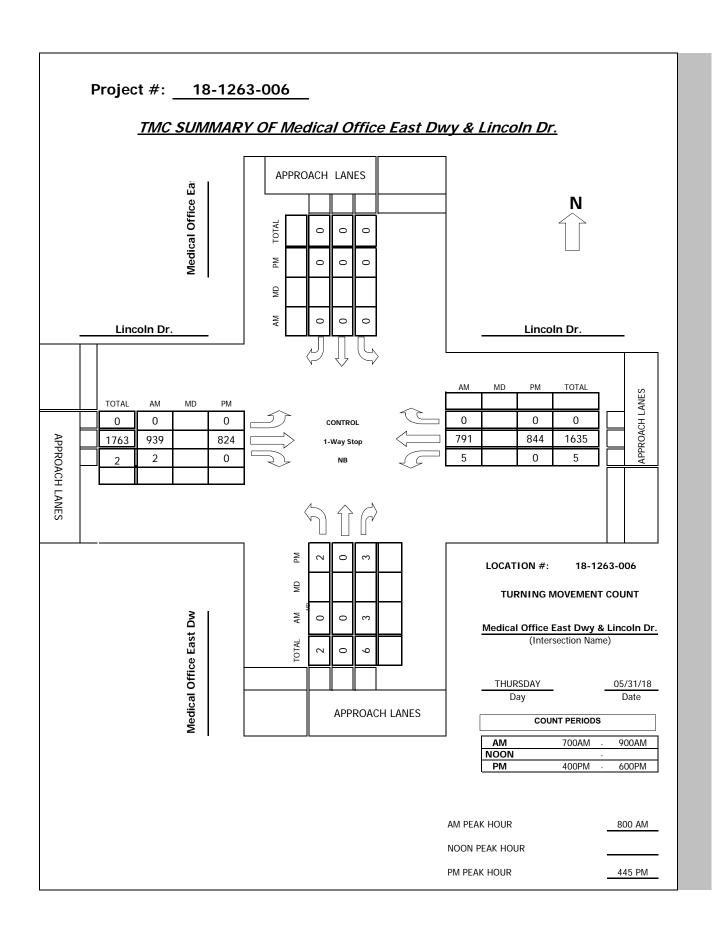
APPENDIX B

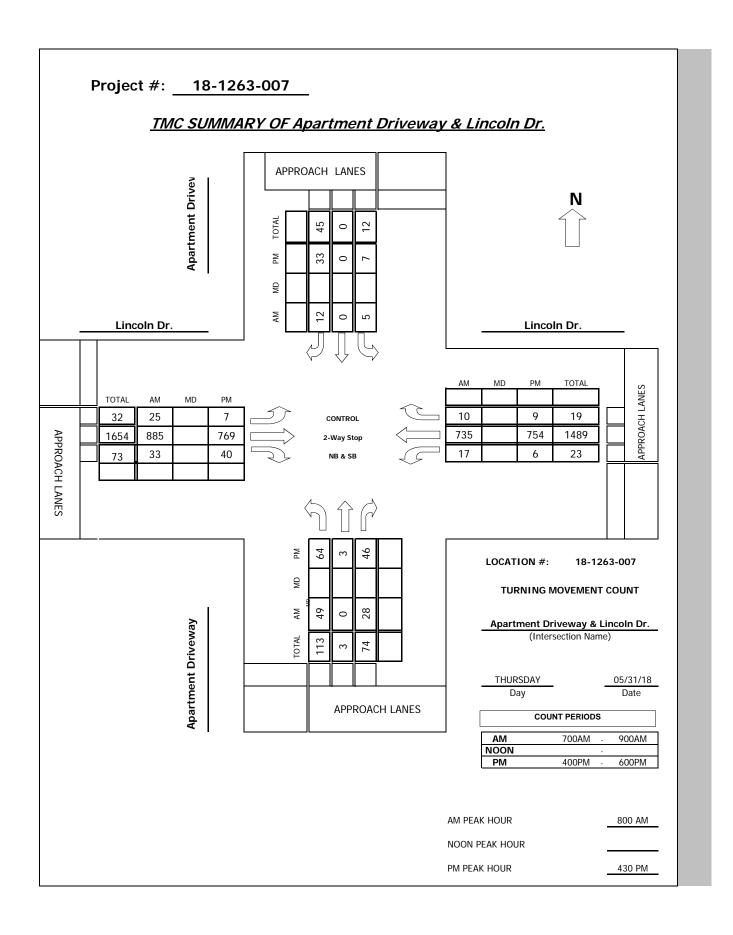

EXISTING TRAFFIC COUNTS

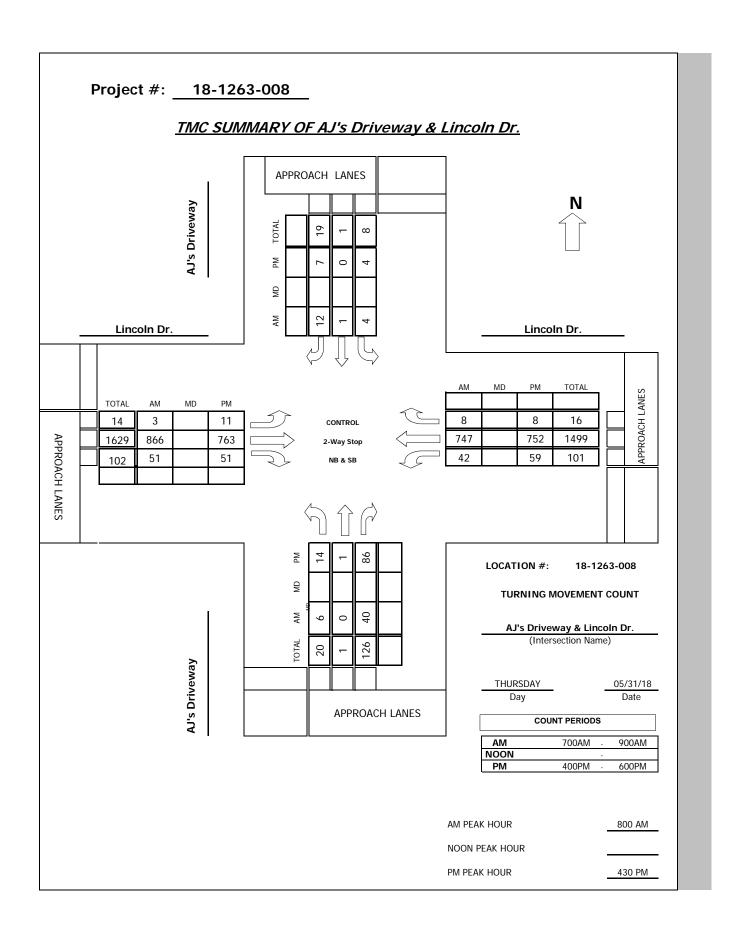


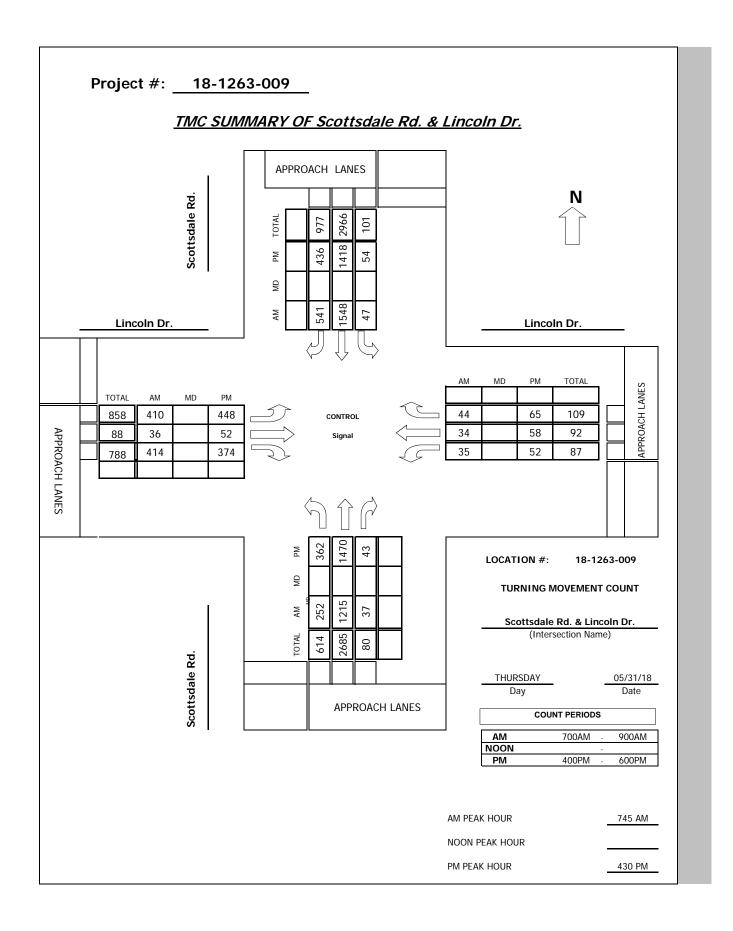












APPENDIX C

EXISTING PEAK HOUR ANALYSIS

1: Mockingbird Ln & Lincoln Drive

7.0 33.5 53.0 40.8% 4.0 2.5 0.0 None 24.4 0.19 0.83 50.8 0.0 49.4 D ¥ 85 85 3.5 8.0 9.0 9.0 3.0 3.0 1.0 0.0 1.0 4.0 4.0 1.0 9.0 0.0 0.21 0.031 43.6 7.0 33.5 44.0 33.8% 4.0 2.5 0.0 6.5 Lag Yes ₹ 33 33 4 None 17.2 0.13 0.22 36.8 36.8 33.8% 4.0 2.5 0.0 6.5 Lag Yes None Cycle Length: 130
Actuard Cycle Length: 130
Offiset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green
Natural Cycle: 80 15.0 27.0 50.0 38.5% 4.5 1.5 0.0 0.0 Lag Yes C-Max 74.8 0.58 0.46 19.1 801 ₹ 801 801 15.0 27.0 38.5% 4.5 1.5 0.0 6.0 6.0 6.0 74.8 0.58 0.06 18.2 815 NA 15.0 27.0 77.0 59.2% C-Max 93.1 0.72 0.37 8.4 8.4 8.4 4.5 1.5 0.0 6.0 3.5 8.0 27.0 20.8% 3.0 1.0 0.0 4.0 1.0 4.0 1.0 95.1 10.5 10.5 Control Type: Actuated-Coordinated Lane Configurations Traffic Volume (vph) Future Volume (vph) Switch Phase
Minimum Initial (s)
Minimum Initial (s)
Minimum Spit (s)
Total Spitt (%)
Yellow Time (s)
All-Red Time (s)
Total Lost Time Adjust (s)
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effet Green (s) Actuated g/C Ratio v/c Ratio Intersection Summary Turn Type Protected Phases Permitted Phases Approach Delay Approach LOS Detector Phase Control Delay Queue Delay Total Delay LOS

₩ 1: Mockingbird Ln & Lincoln Drive **₹** Ø2 (R) Splits and Phases: ğ

Intersection LOS: B ICU Level of Service C

Intersection Signal Delay: 19.7 Intersection Capacity Utilization 69.1% Analysis Period (min) 15

Maximum v/c Ratio: 0.83

Synchro 10 Report Page 1 11/16/2018 CivTech BR

Smoke Tree Resort Existing AM

1: Mockingbird Ln & Lincoln Drive HCM 6th Signalized Intersection Summary

	4	†	<i>></i>	>	ţ	4	•	•	•	٠	→	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	₩.		<u>, </u>	₩.		<u>, </u>	2		r	\$	
Traffic Volume (veh/h)	212	815	59	19	801	39	2	33	15	70	82	216
Future Volume (veh/h)	212	815	59	19	801	39	2	33	15	70	82	216
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		S			8			S			8	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	236	906	32	21	890	43	9	37	17	78	94	240
Peak Hour Factor	06.0	0.00	0.90	0.00	06:0	0.00	06:0	0.00	06:0	0.00	0.90	0.90
Percent Heavy Veh, %	2	2	7	2	2	7	2	7	2	2	2	2
Cap, veh/h	439	2371	84	393	1984	96	88	191	88	301	106	270
Arrive On Green	0.07	89.0	89.0	0.58	0.58	0.58	0.16	0.16	0.16	0.04	0.23	0.23
Sat Flow, veh/h	1781	3501	124	265	3450	167	1046	1213	222	1781	466	1190
Grp Volume(v), veh/h	236	460	478	21	458	475	9	0	54	78	0	334
Grp Sat Flow(s),veh/h/ln	1781	1777	1848	263	1777	1840	1046	0	1770	1781	0	1656
Q Serve(g_s), s	6.7	14.6	14.6	2.1	19.2	19.2	0.7	0.0	3.4	4.7	0.0	25.4
Cycle Q Clear(g_c), s	6.7	14.6	14.6	3.4	19.2	19.2	17.1	0.0	3.4	4.7	0.0	25.4
Prop In Lane	1.00		0.07	1.00		0.09	1.00		0.31	1.00		0.72
Lane Grp Cap(c), veh/h	439	1203	1252	393	1022	1058	88	0	279	301	0	375
V/C Ratio(X)	0.54	0.38	0.38	0.05	0.45	0.45	0.07	0.00	0.19	0.26	0.00	0.89
Avail Cap(c_a), veh/h	627	1203	1252	393	1022	1058	225	0	511	301	0	592
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	11.4	9.1	9.1	12.8	15.8	15.8	61.4	0.0	47.6	42.4	0.0	48.7
Incr Delay (d2), s/veh	1.0	6.0	6.0	0.3	1.4	1.4	0.3	0.0	0.3	0.5	0.0	10.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.7	2.7	0.9	0.3	8.1	8.4	0.2	0.0	1.6	2.1	0.0	11.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	12.4	10.1	10.0	13.0	17.2	17.2	61.7	0.0	47.9	42.9	0.0	58.9
LnGrp LOS	В	В	В	В	В	В	ш	A	О	٥	A	Ш
Approach Vol, veh/h		1174			954			09			412	
Approach Delay, s/veh		10.5			17.1			49.3			22.8	
Approach LOS		В			В			Ω			ш	
Timer - Assigned Phs	-	2	က	4		9		∞				
Phs Duration (G+Y+Rc), s	13.3	80.8	0.6	27.0		94.0		36.0				
Change Period (Y+Rc), s	4.0	0.9	4.0	6.5		0.9		6.5				
Max Green Setting (Gmax), s	23.0	44.0	2.0	37.5		71.0		46.5				
Max Q Clear Time (g_c+I1), s	8.7	21.2	6.7	19.1		16.6		27.4				
Green Ext Time (p_c), s	9.0	6.7	0.0	0.2		7.6		2.1				
Intersection Summary												
HCM 6th Ctrl Delay			21.0									
HCM 6th LOS			O									

Synchro 10 Report Page 2 11/16/2018 CivTech BR

2: Quail Run Rd & Lincoln Driv

III Kun Ka & Lincoln Drive	HCM 6th TWSC
=	

Intersection													
Int Delay, síveh	0.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	<u>"</u>	4₽		F	4₽			4			4		
Traffic Vol, veh/h	0	396	က	2	819	_	0	0	7	7	0	9	
Future Vol, veh/h	0	962	3	2	819	-	0	0	7	7	0	9	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	1	1	None	1	•	None	1	ì	None	1	•	None	
Storage Length	25	٠	٠	22	٠	٠	٠	٠	٠	٠	٠		
Veh in Median Storage,	- #	0	٠	•	0	•	٠	0	٠	٠	0		
Grade, %	٠	0			0			0			0		
Peak Hour Factor	06	8	06	8	06	8	06	8	8	06	8	06	
Heavy Vehicles, %	2	7	2	2	7	2	2	2	7	2	7	2	
Mvmt Flow	0	1069	3	7	910	_	0	0	00	7	0	7	
Major/Minor N	Major1		2	Major2		2	Minor1		2	Minor2			
Conflicting Flow All	911	0	0	1072	0	0	1530	1986	536	1450	1987	456	
Stage 1	٠	٠	٠	٠	٠	٠	1071	1071	٠	915	915		
Stage 2	٠	٠	٠	٠	٠	٠	459	915	٠	535	1072		
Critical Hdwy	4.14	٠	٠	4.14	•	٠	7.54	6.54	6.94	7.54	6.54	6.94	
Critical Hdwy Stg 1	٠	٠	٠	٠	٠	٠	6.54	5.54	٠	6.54	5.54		
Critical Hdwy Stg 2	1	1	1	1	1	1	6.54	5.54	1	6.54	5.54	i	
Follow-up Hdwy	2.22	•	•	2.22	•	•	3.52	4.02	3.32	3.52	4.02	3.32	
Pot Cap-1 Maneuver	743	1	1	949	1	1	80	99	489	92	99	551	
Stage 1	•	•	•	•	•	•	236	295	•	294	350		
Stage 2	1	1	1	•	1	1	221	320	1	497	295	·	
Platoon blocked, %		٠	٠		٠	٠							
Mov Cap-1 Maneuver	743	1	1	949	1	1	79	9	489	06	9	551	
Mov Cap-2 Maneuver	٠	٠	٠	٠	٠	٠	79	99	٠	6	99		
Stage 1	٠	٠		٠		٠	236	295	٠	294	349		
Stage 2							543	349	٠	489	295		
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			0			12.5			20.4			
HCM LOS							В			ပ			

11/16/2018 Synchro 10 Report CivTech BR Page 3

WBR SBLn1
- 242
- 0.037
- 20.4
- C

NBLn1 EBL EBT EBR WBL WBT W 489 743 - 646 - 60016 - 0.0018 - 12.5 0 - 10.6 - 10

Minor LaneMajor Mornt Capacity (veh.h.) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM Sith %ille Q(veh)

Smoke Tree Resort Existing AM

3: Smole Tree West & Lincoln Dr

Int Delay, s/veh	0						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	₹		-	\$	>		
Traffic Vol, veh/h	896	2	· —	818	4	0	
Future Vol, veh/h	896	7		818	4	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	1	None	1	None	1	None	
Storage Length		•	22	٠	0		
Veh in Median Storage, #	0 #	1	1	0	0	1	
Grade, %	0		•	0	0	1	
Peak Hour Factor	8	06	8	06	8	8	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	1076	2		606	4	0	
Major/Minor N	Major1	2	Major2	2	Minor1		
Conflicting Flow All	0	0	1078	0	1534	539	
Stage 1	1		•		1077	•	
Stage 2		•	•	٠	457	٠	
Critical Hdwy		•	4.14	•	6.84	6.94	
Critical Hdwy Stg 1		•		•	5.84	٠	
Critical Hdwy Stg 2	1	1	1	1	5.84	1	
Follow-up Hdwy	•	•	2.22	•	3.52	3.32	
Pot Cap-1 Maneuver	•	•	643	٠	107	487	
Stage 1	•	'	•	,	288	•	
Stage 2	1	1	1	1	604	1	
Platoon blocked, %	1	•		٠			
Mov Cap-1 Maneuver	1	•	643	•	107	487	
Mov Cap-2 Maneuver		•		١	218	٠	
Stage 1		•	•	•	287	•	
Stage 2		•	•	•	904	•	
Approach	H	ı	WR	ı	N N		
UCM Control Dolay o	٥	l		l	210		
HCM LOS	>		>		C C		
Minor Lane/Major Mvmt		NBLn1	EBT	EBR WBL	WBL	WBT	
Capacity (veh/h)		218	•	٠	643	•	
HCM Lane V/C Ratio		0.02	1	-	- 0.002	1	
HCM Control Delay (s)		21.9	1	1	10.6	1	
HCM Lane LOS		ပ	•	•	В	•	
HCM 95th %tile Q(veh)		0.1	1	•	0		

11/16/2018 Synchro 10 Report CivTech BR Page 4

4: Smoke Tree East & Lincoln Dr HCM 6th TWSC

	≥
5	Ξ
΄.	eth
•	9
i	≳
1	Ş
5	_
,	
)	
5	
ı	
)	
)	
•	
5	
:	
)	
•	

Intersection							
Int Delay, sheh	0						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	\$		r	‡	>		
Traffic Vol, veh/h	026	0	0	815		2	
	026	0	0	815	-	7	
Conflicting Peds, #/hr	0	0	0	0	0	0	
	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None		None		None	
Storage Length		٠	25	٠	0	٠	
Veh in Median Storage, #		•	•	0	0	٠	
Grade, %	0			0	0		
Peak Hour Factor	06	8	06	06	06	8	
Heavy Vehicles, %	7	7	7	2	7	7	
Mvmt Flow 1	1078	0	0	906	-	2	
Major/Minor Ma	Major1	\mathbf{Z}	Major2	2	Minor1		
Conflicting Flow All	0	0	1078	0	1531	239	
Stage 1					1078	1	
Stage 2		٠	٠	٠	453	٠	
Critical Hdwy		1	4.14		6.84	6.94	
Critical Hdwy Stg 1	٠	٠	•	٠	5.84	٠	
Critical Hdwy Stg 2	,	1	1		5.84	1	
Follow-up Hdwy	٠	٠	2.22	٠	3.52	3.32	
Pot Cap-1 Maneuver			643	•	108	487	
Stage 1	٠	٠	1	1	788	1	
Stage 2			•	•	209	•	
Platoon blocked, %	٠	٠		٠			
Mov Cap-1 Maneuver	٠	٠	643	•	108	487	
Mov Cap-2 Maneuver	٠	٠	٠	٠	219	٠	
Stage 1	٠	٠	1	•	288	1	
Stage 2	٠	٠	•	٠	209	٠	
Approach	EB		WB		NB		
HCM Control Delay, s	0		0		15.5		
HCM LOS					ပ		
Minor Lane/Major Mvmt	Z	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		346			643		
HCM Lane V/C Ratio		0.01	٠	٠		٠	
HCM Control Delay (s)		15.5			0	1	
HCM Lane LOS		ပ	•	1	⋖	1	
HCM 95th %tile Q(veh)		0	•		0	1	

Synchro 10 Report Page 5 11/16/2018 CivTech BR

Smoke Tree Resort Existing AM

5: Lincoln Medical West & Lincoln Dr

Int Delay, s/veh	0						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	₹		F	\$	>		
Traffic Vol, veh/h	896	4	0	815	0	က	
Future Vol, veh/h	896	4	0	815	0	m	
Conflicting Peds, #/hr	0		0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None	•	None	٠	None	
Storage Length	•	•	22	٠	0	٠	
Veh in Median Storage, #	0 #	•	1	0	0		
Grade, %	0	•	•	0	0	٠	
Peak Hour Factor	8	06	8	06	8	8	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	1076	4	0	906	0	က	
Major/Minor M	Major1	2	Major2	Ξ	Minor1		
Conflicting Flow All	0	0	1080	0	1531	540	
Stage 1	1	•			1078		
Stage 2		٠	٠	٠	453	٠	
Critical Hdwy		•	4.14	•	6.84	6.94	
Critical Hdwy Stg 1	٠	٠	٠	٠	5.84	٠	
Critical Hdwy Stg 2		•	•	•	5.84		
Follow-up Hdwy	•	•	2.22	•	3.52	3.32	
Pot Cap-1 Maneuver	•	1	641		108	486	
Stage 1	•	•	,	•	288	•	
Stage 2		1	•	1	209		
Platoon blocked, %	•	•		٠			
Mov Cap-1 Maneuver	1	•	641	٠	108	486	
Mov Cap-2 Maneuver	•	1	٠	٠	219	•	
Stage 1	1	1	1	1	288	1	
Stage 2	•	•	•	•	209	•	
Annroach	FB		WB		NB		
UCM Control Dolay c					10 E		
HCM LOS	>		>		B B		
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		486			641		
HCM Lane V/C Ratio		0.007		٠		٠	
HCM Control Delay (s)		12.5			0		
HCM Lane LOS		В	٠	٠	V	٠	
HCM 95th %tile Q(veh)		0			0		

Synchro 10 Report Page 6 11/16/2018 CivTech BR

6: Lincoln Medical East & Lincoln Dr

			NBL NBR		က	co	0	Stop	None		
			NBL	>	0	0	0	Stop		0	•
			WBT	‡	815	815	0	Free	None		•
			WBL	-	2	2	0	Free		25	
			EBR	** *	2	2	0	Free	None		
		0.1	EBT	₽	196	196	0	Free	•		
				ĺ			⊨				

Intersection Int Delay, s/veh

1	0 538	- 2	2	4 6.94	4 -	4 .	2 3.32	6 488	- 6	- 6		5 488	- 9	- 9	- 6	В	4	В	EBR WBL WBT	4 -	- 6	- 9	В	
Minor1	0 1540	- 1075	- 465	- 6.84	- 5.84	- 5.84	- 3.52	- 106	- 289	- 266		- 105	- 216	- 286	- 599	NB	12.4		SR WB	- 644	- 0.009	- 10.6		
or2	9/0	ì		4.14			2.22	644	,	ì		644		·		WB	0.1		BT EE	ı		ì		
Major2	0 1076			7			. 7												NBLn1 EBT	488	0.007	12.4	В	
Major1	0	•	'	,	,				'	•	,		٠		•	EB	0							
Major/Minor N	Conflicting Flow All	Stage 1	Stage 2	Critical Hdwy	Critical Hdwy Stg 1	Critical Holwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Stage 2	Platoon blocked, %	Mov Cap-1 Maneuver	Mov Cap-2 Maneuver	Stage 1	Stage 2	Approach	HCM Control Delay, s	HCM LOS	Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	HCM Control Delay (s)	HCM Lane LOS	The state of the state of

Synchro 10 Report Page 7 11/16/2018 CivTech BR

Smoke Tree Resort Existing AM

& Lincoln Dr	HCM 6th TWSC
7: Apartment Drwy & Lincoln Dr	
7:	

Int Delay, s/veh	5.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	₹		*	₹			4		je-		¥:_	
raffic Vol, veh/h	79	912	34	18	757	10	20	0	29	2	0	12	
Future Vol, veh/h	56	912	34	9	757	9	20	0	59	വ	0	12	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	٠	1	None	1	•	None	1		None		1	None	
Storage Length	22	1		22						0		0	
Veh in Median Storage,	**	0	1	1	0	1	1	0	1	1	0		
Grade, %	•	0		•	0	ľ	'	0	•	•	0		
Peak Hour Factor	06	06	8	06	8	8	06	8	06	8	06	06	
Heavy Vehicles, %	2	2	2	2	2	7	2	2	2	2	2	2	
Wvmt Flow	29	1013	38	20	841	=	26	0	32	9	0	13	
				-									
	Majori			Major2		_	Minori		2	Minorz			
Conflicting Flow All	852	0	0	1051	0	0	1551	1982	526	1452	•	426	
Stage 1	•	•	•	•	•	•	1090	1090	•	887	•		
Stage 2	,						461	892		292			
Critical Hdwy	4.14	1		4.14	•	1	7.54	6.54	6.94	7.54	•	6.94	
Critical Hdwy Stg 1	,	1					6.54	5.54		6.54			
Critical Hdwy Stg 2	•	•				•	6.54	5.54	•	6.54			
Follow-up Hdwy	2.22			2.22	•	•	3.52	4.02	3.32	3.52	•	3.32	
Pot Cap-1 Maneuver	783	1	1	929	1	1	77	19	496	92	0	277	
Stage 1	•	•	•	1	'	1	230	289	•	305	0		
Stage 2	•					•	220	328		477	0		
Platoon blocked, %						•							
Mov Cap-1 Maneuver	783	1	1	929	1	1	71	22	496	82	1	277	
Mov Cap-2 Maneuver	١	•	1	•	•	•	71	22	•	83	•		
Stage 1	•	1	1	•	1	•	221	278	•	294	1		
Stage 2	1	•	1	1	•	1	521	347	1	429	•		
Approach	EB			WB			8			SB			
HCM Control Delay, s	0.3			0.2			124.4			23.4			
HCM LOS							ш			U			
Viinor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	WBR SBLn1 SBLn2	BLn2			
Capacity (veh/h)		104	783			929		•	82	277			
HCM Lane V/C Ratio			0.037	•	•	0.03	•	•	0.068	0.023			
HCM Control Delay (s)		124.4	9.8			10.6			52.1	11.4			
HCM Lane LOS		ш	۷			α			ш	α			
			_			ב				2			

Synchro 10 Report Page 8 11/16/2018 CivTech BR

8: AJ's Drwy & Lincoln Dr HCM 6th TWSC

Smoke Tree Resort Existing AM

9: Scottsdale Rd & Lincoln Dr

•	SBR	¥C	222	222	vo+mq	4	9	4		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5			None	89.3	69:0	0.53	8.4	0.0	8.4	A												
→	SBT	444	1594	1594	NA	9		9		10.0	16.0	57.0	43.8%	4.7	1.0	0.0	2.7	Lag		C-Max	9.09	0.47	0.75	32.1	0.0	32.1	ပ	27.1	ပ										
۶	SBL	*	48	48	Prot	-		-		2.0	11.0	14.0	10.8%	3.3	2.0	0.0	5.3	Lead		None	7.5	90:0	0.52	77.2	0.0	77.2	ш												
←	NBT	441	1251	1251	¥	2		7		10.0	16.7	73.0	56.2%	4.7	1.0	0.0	2.7	Lag		None	72.2	0.56	0.51	19.6	0.0	19.6	В	26.4	ပ									۵	
•	NBL	14	260	260	Prot	2		2		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5	Lead		None	16.9	0.13	0.65	0.09	0.0	0.09	ш										LOS: C	ICU Level of Service D	
ţ	WBT	4₽	35	32	¥	∞		∞		7.0	13.0	13.0	10.0%	3.6	2.0	0.0	9.9			None	7.2	90:0	0.39	34.3	0.0	34.3	O	46.0	D								Intersection LOS: C	U Level o	
\	WBL	F	36	36	Split	∞		∞		7.0	13.0	13.0	10.0%	3.6	2.0	0.0	9.9			None	7.2	90:0	0.41	72.1	0.0	72.1	ш						_				I	೨	
/	EBR	¥.	426	426	vo+mq	2	4	2		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5	Lead		None	39.9	0.31	0.89	44.6	0.0	44.6	٥						t of Greer						
†	EBT	₩	37	37	NA	4		4		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5			None	23.0	0.18	98.0	77.4	0.0	77.4	ш	9.19	ш				SBT, Star						
4	EBL	je.	422	422	Split	4		4		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5			None	23.0	0.18	0.85	77.2	0.0	77.2	ш						phase 6:5		inated		~	n 77.0%	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Queue Delay	Total Delay	TOS	Approach Delay	Approach LOS	Intersection Summary	Cycle Length: 130	Actuated Cycle Length: 130	Offset: 0 (0%), Referenced to phase 6:SBT, Start of Green	Natural Cycle: 90	Control Type: Actuated-Coordinated	Maximum v/c Ratio: 0.89	Intersection Signal Delay: 33.8	Intersection Capacity Utilization 77.0%	Analysis Period (min) 15

11551 1986 528 1457 2 1027 1027 - 955 1 524 959 - 502 10 754 654 694 754 6 654 5.54 - 6.54 6 654 5.54 - 6.54 5 77 60 497 91 3 251 310 - 278 3 504 334 - 520 30

0

90

8 7 4 432

0

Major2 1050

Major1 863

Major/Minor Conflicting Flow All Stage 1

2 8

2 2

991

06

Peak Hour Factor Heavy Vehicles, %

- 4.14

2.22

Follow-up Hdwy 2.22 Pot Cap-1 Maneuver 775

Critical Hdwy Stg 1 Critical Hdwy Stg 2

Stage 2 Critical Hdwy

12 0

Stop

Stop

Stop

Free

Free

Free

Free

Traffic Vol, verhh 3
Future Vol, verhh 3
Conflicting Peds, #hr 10
Sign Control Free
RT Channelized Stonge Length 25
Stonge Length 25
Grade, %

25

25

0 O Stop Stop

692

53

Lane Configurations

Int Delay, s/veh

78 78 277 471

55 309 310

70 70 250 455

497

629

Stage 1 - Stage 2 - Platoon blocked, % Mov Cap-1 Maneuver 775

Mov Cap-2 Maneuver Stage 1

SB C

20.9 C

WB 0.6

EB

Approach HCM Control Delay, s HCM LOS

9: Scottsdale Rd & Lincoln Dr Splits and Phases:

- 78 572 - 0.057 0.023 - 53.9 11.4

659 0.073 10.9 B

279 775 0.187 0.004 20.9 9.7

Capacity (veh/h)
HCM Lane V/C Ratio
HCM Control Delay (s)
HCM Lane LOS
HCM 95th %tile Q(veh)

EBT

Minor Lane/Major Mvml

- 0.2 0.1

7

11/16/2018 CivTech BR

Synchro 10 Report Page 9

11/16/2018 CivTech BR

Synchro 10 Report Page 10

9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

	4	†	~	\	ţ	1	•	—	•	٠	→	•
Movement	EBI	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	-	4	*	r	₩.		F	4413		r	444	¥C
Traffic Volume (veh/h)	422	37	426	36	32	45	260	1251	38	48	1594	25.7
Future Volume (veh/h)	422	37	426	36	32	45	260	1251	38	48	1594	557
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		9			9			No No			9	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	498	0	473	40	36	20	289	1390	42	53	1771	619
Peak Hour Factor	06:0	06:0	06:0	06:0	0.90	0.90	0.00	0.00	0.00	06:0	06.0	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	671	0	458	95	95	82	348	2336	71	89	2015	924
Arrive On Green	0.19	0.00	0.19	0.05	0.05	0.02	0.10	0.46	0.46	0.04	0.39	0.39
Sat Flow, veh/h	3563	0	1585	1781	1777	1585	3456	5093	154	1781	5106	1585
Grp Volume(v), veh/h	498	0	473	40	36	20	289	676	503	53	1771	619
Grp Sat Flow(s),veh/h/ln	1781	0	1585	1781	1777	1585	1728	1702	1843	1781	1702	1585
Q Serve(g_s), s	17.1	0.0	24.5	2.8	2.8	4.0	10.7	26.4	26.4	3.8	41.8	34.7
Cycle Q Clear(g_c), s	17.1	0.0	24.5	2.8	2.8	4.0	10.7	26.4	26.4	3.8	41.8	34.7
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.08	1.00		1.00
Lane Grp Cap(c), veh/h	671	0	458	95	95	82	348	1561	845	89	2015	924
V/C Ratio(X)	0.74	0.00	1.03	0.42	0.41	0.59	0.83	09:0	09:0	0.78	0.88	0.67
Avail Cap(c_a), veh/h	671	0	458	101	101	8	651	1762	954	119	2015	924
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	49.8	0:0	46.2	9.69	9.69	60.1	57.4	26.2	26.2	62.0	36.5	18.5
Incr Delay (d2), s/veh	3.9	0.0	50.4	-	=	5.4	2.0	0.2	0.4	6.9	5.9	3.9
Initial Q Delay(d3),s/veh	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	8.0	0.0	21.1	1.3	1.3	1.7	4.8	10.7	11.6	1.9	18.2	20.2
Unsig. Movement Delay, siven	0	0				i.	C			0	9	
LnGrp Delay(d),s/veh	53.7	0.0	9.06	/:09	9.09	65.5	59.3	70.4	70.0	8.89	42.3	22.4
Lifeip LUS		∢ ;	-	ш	ال	ш	۰	اد	اد	ш		اد
Approach Vol, veh/h		116			129			1721			2443	
Approach Delay, s/ven		74.0			07.7			32.0			3/.9	
Approach LOS		ш			ш			ပ			٥	
Timer - Assigned Phs	-	2		4	2	9		∞				
Phs Duration (G+Y+Rc), s	10.3	65.3		30.0	18.6	57.0		12.5				
Change Period (Y+Rc), s	* 5.3	5.7		5.5	5.5	5.7		9.6				
Max Green Setting (Gmax), s	* 8.7	67.3		24.5	24.5	51.3		7.4				
Max Q Clear Time (g_c+I1), s	2.8	28.4		26.5	12.7	43.8		0.9				
Green Ext Time (p_c), s	0.0	2.1		0.0	0.4	2.5		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			43.3									
HCM 6th LOS			۵									
Notes												

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for furning movement

*HCM oth computational engine requires equal clearance times for the phases crossing the barrier.

11/16/2018

CivTech BR

Synchro 10 Report Page 11

1: Mockingbird Ln & Lincoln Drive

→ •	SBL SBT	₹	57 46		pm+pt NA	3 8	8	3 8		4.0 7.0	8.0 33.5	8.0 42.0	6.2% 32.3%		1.0 2.5		4.0 6.5	Lead	Yes	None None	19.6 17.1					33	D C	37.3	D									
←	3L NBT	£	09	09 /	NA	4	4	4 4		7.0 7.0	.5 33.5		26.2%				.5 6.5			None	10.7	0.08	0.51	63.3		55.7 63.3	Е	62.6	ш				п				Intersection LOS: B	
ţ	WBT NBI	₩₽	802	805	NA Perm	2		2		15.0 7	27.0 33.5	57.0 34.0	43.8% 26.2%		1.5	0.0	9 0.9		Yes	_			0.42 0.10				В	13.0	В				L, Start of Gree				Interse	
†	EBT WBL	₩ ₽	764 12	764 12	NA Perm	9	2	6 2		15.0 15.0	27.0 27.0	88.0 57.0	67.7% 43.8%		1.5 1.5		0.9 0.9	Lag	Yes	C-Max C-Max	100.4 84.3		0.32 0.03			5.3 11.8	A B	5.9	Α				/BTL and 6:EBT					
4	EBL	<u>1</u> -	228	228	pm+pt	-	9	-		4.0	8.0	31.0		3.0	1.0	0.0	4.0	Lead	Yes		102.4	0.79	0.53	8.1	0.0	8.1	۷					30	ed to phase 2:W		Soordinated		: 14.2	100
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Queue Delay	Total Delay	TOS	Approach Delay	Approach LOS	Intersection Summary	Cycle Lenath: 130	Actuated Cycle Length: 130	Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green	Natural Cycle: 90	Control Type: Actuated-Coordinated	Maximum v/c Ratio: 0.66	Intersection Signal Delay: 14.2	

Splits and Phases: 1: Mockingbird Ln & Lincoln Drive - NO (R)

Synchro 10 Report Page 1 11/16/2018 CivTech BR

Smoke Tree Resort Existing PM

1: Mockingbird Ln & Lincoln Drive HCM 6th Signalized Intersection Summary

	1	†	/	\	ļ	✓	•	-	•	•	-	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	₩.		r	₩		r	£,		<u>, </u>	\$	
Traffic Volume (veh/h)	228	764	28	12	802	99	7	09	10	57	46	145
Future Volume (veh/h)	228	764	28	12	802	26	7	09	10	22	46	145
Initial Q (Qb), veh	0 9	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0
Ped-Bike Adj(A_pb1)	8.0		00.1	00.1		00.1	00.1		8.	8:1		8.1
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1:00	1.00
Work Zone On Approach	010	00 5	1	1	ON S	1	0 10 1	ON S	0 10 1	0	00	0
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	253	846	31	13	894	62	∞ ,	/9	Ξ	63	21	161
Peak Hour Factor	0.90	0.90	0.00	0.00	0.90	06.0	06:0	0.00	06:0	0.00	0.00	0.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	484	2635	96	471	2222	154	84	139	23	173	26	188
Arrive On Green	90:0	0.75	0.75	99.0	99.0	99.0	0.09	0.09	0.09	0.03	0.15	0.15
Sat Flow, veh/h	1781	3497	128	631	3371	234	1170	1567	257	1781	396	1250
Grp Volume(v), veh/h	253	431	449	13	471	485	80	0	78	63	0	212
Grp Sat Flow(s),veh/h/ln	1781	1777	1847	631	1777	1828	1170	0	1824	1781	0	1645
Q Serve(g_s), s	9.6	10.3	10.3	6.0	16.0	16.0	6.0	0.0	5.3	4.0	0.0	16.3
Cycle Q Clear(g_c), s	9.9	10.3	10.3	6.0	16.0	16.0	9.5	0.0	5.3	4.0	0.0	16.3
Prop In Lane	1.00		0.07	1.00		0.13	1.00		0.14	1.00		97.0
Lane Grp Cap(c), veh/h	484	1339	1392	471	1171	1205	84	0	162	173	0	247
V/C Ratio(X)	0.52	0.32	0.32	0.03	0.40	0.40	0.10	0.00	0.48	0.36	0.00	98.0
Avail Cap(c_a), veh/h	740	1339	1392	471	1171	1205	228	0	386	173	0	449
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	7.4	5.2	5.2	7.7	10.3	10.3	62.3	0.0	56.4	50.9	0:0	53.9
Incr Delay (d2), s/veh	6.0	9.0	9.0	0.1	1.0	1.0	0.5	0.0	2.2	1.3	0.0	8.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.0	3.7	3.8	0.1	6.4	9.9	0.3	0.0	2.5	1.9	0.0	7.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	8.3	2.8	2.8	7.8	11.3	11.3	62.8	0.0	58.6	52.1	0.0	62.3
LnGrp LOS	A	A	A	A	В	В	ш	Α	ш	О	Α	Ш
Approach Vol, veh/h		1133			696			98			275	
Approach Delay, s/veh		6.4			11.3			29.0			0.09	
Approach LOS		A			В			ш			ш	
Timer - Assigned Phs	_	2	3	4		9		8				
Phs Duration (G+Y+Rc), s	12.3	7.16	8.0	18.0		104.0		26.0				
Change Period (Y+Rc), s	4.0	0.9	4.0	6.5		0.9		6.5				
Max Green Setting (Gmax), s	27.0	21.0	4.0	27.5		82.0		35.5				
Max Q Clear Time (g_c+I1), s	7.6	18.0	0.9	11.2		12.3		18.3				
Green Ext Time (p_c), s	0.7	7.5	0.0	0.3		6.9						
Intersection Summary												
HCM 6th Ctrl Delay			16.1									
HCM 6th LOS			В									

Synchro 10 Report Page 2 11/16/2018 CivTech BR

2: Quail Run Rd & Lincoln Drive

ב ב ב	HCM 6th TWSC
_	£
5	HCM (
3	
ŏ	
2	
5	
2. Guall ruil ru & Lilicolli I	
i	

Intersection													
Int Delay, sheh	0												
Movement	EBL	EBT	EBR	EBR WBL WBT		WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	<u>r</u>	₩		r	₹			4			4		
Traffic Vol, veh/h	0	846	_	0	871	0	0	0	2	0	0	0	
Future Vol, veh/h	0	846	-	0	871	0	0	0	2	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	1	1	None	1	1	None		1	None	1		None	
Storage Length	25		٠	22		٠	٠	٠	٠	٠	٠		
Veh in Median Storage, #	#	0	•	1	0	1		0	1	1	0		
Grade, %		0		•	0	•	٠	0	٠	٠	0		
Peak Hour Factor	06	8	06	8	06	8	06	06	06	06	8	06	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	940	-	0	896	0	0	0	2	0	0	0	

Conflicting Flow All 968 0 941 0 1425 1909 484 Stage1 - - - - 941 - - 941 - - 941 - - 941 - - 941 - - - 941 - - - 941 - <	Major/Minor	Major1		2	Major2		2	Minor1		Σ	Minor2			
4.14	flicting Flow All	896	0	0	941	0	0	1425		471	1438	1909	484	
1.1 NBLN1 EBL EBT RBR WBT WBT NBLN1 S39 707 1.0	Stage 1	•	٠	٠	٠	٠	٠	941	941	٠	896	896		
4.14 4.14 7.54 6.54 6.94 7.54 6.	Stage 2	•	٠	٠	٠	٠	٠	484	896		470	941		
2.2	cal Hdwy	4.14	•	٠	4.14	٠	٠	7.54		6.94	7.54	6.54	6.94	
1.5 1.5	ical Hdwy Stg 1	•	٠	٠	٠	٠	٠	6.54	5.54	٠	6.54	5.54		
2.22 2.22 3.52 4.02 3.32 3.52 4.02 7.07 724 96 68 539 94 68 68 7.00 7.00	ical Hdwy Stg 2	1	1	1	1	1	1	6.54	5.54	٠	6.54	5.54	,	
707 - 724 - 96 68 539 94 68 68 707	ow-up Hdwy	2.22	٠	٠	2.22	٠	٠	3.52		3.32	3.52	4.02	3.32	
1.00	Cap-1 Maneuver	707			724		1	96	89	233	94	89	529	
707 - 724 - 96 68 539 94 68 68 69 68 69 68 69 68 69 68 68	Stage 1	•	٠	٠	٠	٠	٠	283	340		273	330		
707 724 96 68 539 94 68 68 68 68 68 68 68 6	Stage 2	•	•	٠	٠	٠	٠	533	330	٠	543	340		
707 724	toon blocked, %		,				1							
New Year New Year	/ Cap-1 Maneuver	707	•	٠	724	٠	•	96	89	539	94	89	529	
EB	/ Cap-2 Maneuver	٠	٠	٠	٠	٠		96	89	٠	94	89		
EB	Stage 1	•					1	283	340	÷	273	330		
FB WB NB NB NB NB NB NB N	Stage 2	,	•	•	•	•	•	533	330	,	541	340		
EB WB NB NB NB NB NB NB N														
11.7 B	roach	EB			WB			NB			SB			
B B C C C C C C C C	M Control Delay, s	0			0			11.7			0			
1 NBLn1 EBL EBT EBR WBL WBT WBRSBLn 539 707 - 724 0.004	MLOS							В			⋖			
t NBLn1 EBL EBT EBR WBL WBT WBRSBLn 539 707 - 724 - 0004 11.7 0 - 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
539 707 724	or Lane/Major Mvm		JBLn1	EBL	EBT		WBL		WBR SE	3Ln1				
11,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	acity (veh/h)		233	707	•	•	724	•		•				
11.7 0 · · · 0 · · · · B B A · · · · A · · · · · · · ·	M Lane V/C Ratio		0.004			٠				٠				
B A A 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M Control Delay (s)		11.7	0	٠	٠	0	•		0				
	M Lane LOS		В	A	٠	٠	⋖	•		V				
	M 95th %tile Q(veh	_	0	0	1	1	0	•	ì	÷				

Synchro 10 Report Page 3 11/16/2018 CivTech BR

Smoke Tree Resort Existing PM

3: Smole Tree West & Lincoln Dr HCM 6th TWSC

IIII Delay, sveli							
	>						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4₽		<u>,-</u>	₩	À		
Traffic Vol, veh/h	848	-	0	870	_	0	
Future Vol, veh/h	848	-	0	870	-	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
	Free		Free	Free	Stop	Stop	
RT Channelized	1	None		None	1	None	
Storage Length	•	•	22	•	0		
Veh in Median Storage, #	0 #	٠	٠	0	0		
Grade, %	0	•	٠	0	0		
Peak Hour Factor	8	06	8	06	8	06	
Heavy Vehicles, %	7	7	2	7	7	2	
Mvmt Flow	942		0	196	-	0	
Major/Minor Ma	Major1	≥	Major2	2	Minor1		
Conflicting Flow All	0	0	943	0	1427	472	
Stage 1	•	٠		1	943		
Stage 2					484		
Critical Hdwy	٠	٠	4.14	٠	6.84	6.94	
Critical Hdwy Stg 1	٠	٠	٠		5.84		
Critical Hdwy Stg 2	٠	٠	٠	٠	5.84		
Follow-up Hdwy	٠	•	2.22	•	3.52	3.32	
Pot Cap-1 Maneuver	٠	٠	723	٠	126	538	
Stage 1	٠	٠	٠	٠	339		
Stage 2	1	1	1	1	282		
Platoon blocked, %	•	•		•			
Mov Cap-1 Maneuver	1	1	723	1	126	538	
Mov Cap-2 Maneuver	٠	٠	٠	•	248		
Stage 1	1	1	1	1	339		
Stage 2	1	1	1	•	282		
Approach	EB		WB		NB		
HCM Control Delay, s	0		0		19.6		
HCM LOS					ပ		
	2	7	Ė		Į.	FOR	
Capacity (yoh/h)	2	NBLIII 248	EDI	EDK	VVBL 733	/bl	
Capacily (veryn)		248			173		
HCM Lane V/C Ratio		0.004	٠	٠	' (
HCM Control Delay (s)		9.61		•	0		
HCM Lane LOS		ပ	٠	•	V		
HCM 95th %tile Q(veh)		0		٠	0		

Synchro 10 Report Page 4 11/16/2018 CivTech BR

4: Smoke Tree East & Lincoln Dr HCM 6th TWSC

_	-
_	>
=	\vdash
\vec{a}	_
\approx	÷
$\overline{}$	4
=	5
& LINCOIN	HCM 6th TW
	I
0	
East	
22	
U	
ш	
Lee	
n)	
₹.	
Ψ	
_	
_	
4	
Ψ.	
×	
\circ	
=	
=	
$\overline{}$	
4. Smoke	
+	
•	

Movement EBI EBR WBL WBT NBR NBR MBR WBL WBT NBR MBR							
Corrections	lersection						
iorns	Delay, síveh	0					
Major Majo		EBT		WBL	WBT	NBL	NBR
h 847 1 2 870 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ne Configurations	₽		F	‡	>	
Horage, # 0 1 2 870 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ffic Vol, veh/h	847	_	2	870	-	2
Free Free Free Stop Stop Stop Stop Stop Stop Stop Stop	ure Vol, veh/h	847	-	7	870	-	2
Free Free Free Slop Site	nflicting Peds, #/hr	0	0	0	0	0	0
All None - None - Nore		Free	Free	Free	Free	Stop	Stop
Najora 1. 25 0 0 0 0 0 0 0 0 0	Channelized	1	None	1	None		None
Norage, # 0 0 0 0 20 90 90 90 90 90 90 30 2 2 2 2 2 30 2 2 2 2 2 4 1 1 2 967 1 All 0 0 942 0 1430 4 All 0 0 942 0 1430 4 All 0 0 942 0 1430 4 91 0 0 942 0 1430 4 92 1 0 0 942 1 93 1 0 0 0 942 0 1430 4 94 2 1 0 0 942 1 94 6 6 6 6 6 6 6 6 94 6 6 6 6 6 6 6 95 8 9 1 0 0 0 0 0 0 0 95 8 9 1 0 0 0 0 0 0 95 8 9 1 0 0 0 0 0 0 0 95 8 9 1 0 0 0 0 0 0 0 0 14 4 10 0 0 0 0 0 0 0 0 0 0 14 4 10 0 0 0 0 0 0 0 0 0 0 0 14 4 1 0 0 0 0 0 0 0 0 0 0 0 14 4 1 0 0 0 0 0 0 0 0 0 0 0 0 14 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 14 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rage Length	٠		25		0	
90 9 9 9 9 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2	n in Median Storage, #	0 #	•	1	0	0	
90 90 90 90 90 90 90 90 90 90 90 90 90 9	ıde, %	0			0	0	
2 2 2 2 2 2 2 2 2 2	ak Hour Factor	06	8	06	8	06	06
1	avy Vehicles, %	2	7	2	7	7	2
Major Major Minor 0 0 942 0 1430 0 0 0 942 0 1430 0 0 1430 0 942 0 0 1430 0 942 0 0 1430 0 943 0 0 1440 0 1009 0 0 1444 0 1009 0 0 1444 0 1009 0 0 1444 0 1009 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mt Flow	941		2	196		2
Major Minor Mi							
0 0 942 0 1430 942 4.14 - 6848 4.14 - 6848 2.22 - 584 2.22 - 584 724 - 125 724		ajor1	2	lajor2	≥	inor1	
## 178 1942 1942 1942 1943 1944	nflicting Flow All	0	0	942		1430	471
EB WB NB	Stage 1	٠	٠	•	٠	942	
- 4.14 - 6.84 - 2.22 - 5.84 - 2.22 - 3.52 - 7.24 - 1.25 - 3.40 - 7.24 - 1.25 - 3.40 - 7.24 - 1.25 - 3.40 - 7.24 - 1.25 - 3.40 - 7.24 - 1.25 - 3.40 - 7.24 - 1.25 - 6.83 - 7.24 - 1.25 - 7.24 - 1.25 - 7.24 -	Stage 2	٠	٠	•	٠	488	
EB WB NB	ical Hdwy	٠	٠	4.14	٠	6.84	6.94
EB WB NB	ical Hdwy Stg 1	٠	•	•	٠	5.84	
EB WB NB NB NB 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4 0.0009 - 0.0003 14.4	ical Hdwy Stg 2	1	1	1	•	5.84	
125 125	low-up Hdwy	٠	٠	2.22	٠	3.52	3.32
EB NB	Cap-1 Maneuver	•	•	724	•	125	539
EB WB NB WB NB	Stage 1	٠	٠	•	٠	340	
EB	Stage 2	٠	•	•		283	
EB WB NB	toon blocked, %	•	1		٠		
EB WB NB O 0 144 NBINI EBI EBR WBI WB 387 - 724 0009 - 0003 144 - 10	/ Cap-1 Maneuver	•	•	724	•	125	539
EB WB NB	/ Cap-2 Maneuver	٠	٠	٠	٠	247	
EB WB NB	Stage 1	٠	•	1	·	339	
NB NB NB NB NB NB NB NB	Stage 2	•	•	•	٠	283	
EB WB NB							
0 0 14.4 B B NBLn1 EBR WBL WB 387 - 724 0.009 - 0.003 14.4 - 10 B - A	proach	EB		WB		NB	
NBLn1 EBT EBR WBL WB 387 . 724 0.009 . 0.003 14.4 . 10 B . A	M Control Delay, s	0		0		14.4	
NBLn1 EBT EBR WBL WB 387 - 724 0.009 - 0.003 144 - 10 B - A	MLOS					В	
NBLn1 EBT EBR WBL WB 387 . 724 0.009 . 0.003 144 . 10 B . A							
387 724 0.009 0.003 0 144 10 18 A 0 0 0	or Lane/Major Mvmt	Z	BLn1	EBT		WBL	WBT
0.009 0.003 14.4 10 B A 0 0 0	oacity (veh/h)		387	1	•	724	
lay (s) 14.4 10 B A O(veh) 0 0	M Lane V/C Ratio		600.0			0.003	
B A Q(veh) 0 0	M Control Delay (s)		14.4	•	•	10	
0	M Lane LOS		Ω	1	•	⋖	
	M 95th %tile Q(veh)		0	•	٠	0	

Synchro 10 Report Page 5 11/16/2018 CivTech BR

Smoke Tree Resort Existing PM

5: Lincoln Medical West & Lincoln Dr

### EBI EB EB EB EB EB EB EB	Int Delay, s/veh	0	l					
1	Movement	EBT	EBR			NBL	NBR	
849 0 0 870 2 849 0 0 870 2 849 0 0 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0	Lane Configurations	₹		F	\$	>		
10 0 0 0 0 0 0 0 0 0	Traffic Vol, veh/h	849	0	0	870	5	0	
Color Colo	Future Vol, veh/h	849	0	0	870	2	0	
Tree Free Free Stop Signed S	Conflicting Peds, #/hr		0	0	0	0	0	
None	Sign Control		Free	Free	Free		Stop	
1	RT Channelized	1	None	1	None	1	None	
0	Storage Length	٠	٠	22	٠	0		
Majori Majore Minori Majori Majori Minori Majore Minori Majore Minori Majore Minori Mi	Veh in Median Storage,		•		0	0		
Majort Majorz Minort Majorz Majorz Minort Majorz Minort Majorz Minort Majorz Minort Majorz Minort Majorz Minort Majorz Majorz Minort Majorz Majorz Minort Majorz Ma	Grade, %	0	٠	٠	0	0		
2	Peak Hour Factor	06	06	8	06	8	06	
Majori Majore Minori 7 0 0 943 0 1427 47 0 0 943 0 1427 47 0 0 943 0 1427 47	Heavy Vehicles, %	2	2	2	2	2	2	
Major1 Major2 Mitror1 417 47 47 47 47 47 47 47 47 47 47 47 47 47	Mvmt Flow	943	0	0	196	2	0	
Majort Major2 Minort 47 47 47 47 47 47 47 47 47 47 47 47 47								
0 0 943 0 1427 47 943 943 943		/lajor1	2	1ajor2	2	lnor1		
HI NBINT EBT EBR WBL WB To compare the compare to	Conflicting Flow All	0	0	943	0	1427	472	
HINBLAIL EBT EBR WBL WF	Stage 1					943		
## 1.00	Stage 2	,	,		,	484		
EB WB NBL WB WBL WBL WBL WBL WBL WBL WBL WBL WB	Critical Hdwy	•	•	4.14	•	6.84	6.94	
EB WB NB	Critical Hdwy Stg 1	,			,	5.84		
EB WB NB	Critical Hdwy Stg 2		•		٠	5.84		
EB WB NBA WB NB NB	Follow-up Hdwy	•	•	2.22	•	3.52	3.32	
EB WB NB WB	Pot Cap-1 Maneuver		•	723		126	538	
EB WB NB	Stage 1	•	,	٠	٠	339		
EB WB NB	Stage 2	•	,		٠	282		
EB WB NB NB C C C C C C C C C C C C C C C C	Platoon blocked, %	٠	٠		٠			
EB WB NB	Mov Cap-1 Maneuver	1	1	723	•	126	538	
EB WB NB NB C C C C C C C C C C C C C C C C	Mov Cap-2 Maneuver	•	•	•	٠	248		
EB WB NB NB C C C C C C C C C C C C C C C C	Stage 1					339		
EB WB NB NB C C C C C C C C C C C C C C C C	Stage 2	٠	٠	•	٠	282		
EB WB NB NB NB NB NB NB N								
0 0 19.6 C C C C C C 24.8 C 24	Approach	EB		WB		NB		
C C 248 WBL WB WBL WB (1973	HCM Control Delay, s	0		0		19.6		
11 NBLn1 EBT EBR WBL WB 248 - 723 0.009 1) 19.6 - 0	HCM LOS					ပ		
(1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Minor Lano/Major Mumi		La Idi	FDT		IQ/W	TOW	
0.009 0 19.6 0	Capacity (veh/h)		248			723	,	
(i) 19.6 0	HCM I ane V/C Ratio		0.00	ľ				
C	HCM Control Delay (s)		19.6			0		
O quant	HCM Lane LOS			ľ		٥		
	HCM 95th %tile O(veh)) <			: 0		

Synchro 10 Report Page 6 11/16/2018 CivTech BR

-							
Intersection							
Int Delay, s/veh	0						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4		F	‡	>		
Traffic Vol, veh/h	849	0	0	698	7	3	
Future Vol, veh/h	849	0	0	698	2	3	
Conflicting Peds, #/hr	0	0	0	0	0	0	
	Free	Free	Free	Free	Stop	Stop	
RT Channelized	٠	None	•	None		None	
Storage Length	٠	٠	25	٠	0		
Veh in Median Storage, ³	0 #	•	•	0	0		
Grade, %	0			0	0		
Peak Hour Factor	06	06	06	06	06	06	
Heavy Vehicles, %	7	7	7	7	7	2	
Mvmt Flow	943	0	0	996	2	3	
Major/Minor Ma	Major1	2	Major2	2	Minor1		
Conflicting Flow All	0	0	943	0	1426	472	
Stage 1	٠	•	•	٠	943		
Stage 2	٠	٠	٠	٠	483		
Critical Hdwy	•	1	4.14	1	6.84	6.94	
Critical Hdwy Stg 1	•	•	•	•	5.84		
Critical Hdwy Stg 2	1	•	•	•	5.84		
Follow-up Hdwy	٠		2.22	٠	3.52	3.32	
Pot Cap-1 Maneuver	1	•	723	•	126	538	
Stage 1	٠	٠	٠	٠	339		
Stage 2	1	1	1	1	286		
Platoon blocked, %	٠	•		٠			
Mov Cap-1 Maneuver	•	•	723	•	126	538	
Mov Cap-2 Maneuver	٠	٠	٠	٠	248		
Stage 1	٠	•	•	•	339		
Stage 2	٠	•	•	•	286		
Approach	EB		WB		NB		
HCM Control Delay, s	0		0		15		
HCM LOS					ပ		
Minor Lane/Major Mvmt	Z	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		367	1	•	723		
HCM Lane V/C Ratio		0.015	•	٠	٠		
HCM Control Delay (s)		15		1	0		
HCM Lane LOS		ပ	٠	٠	⋖		
HCM 95th %tile Q(veh)		0	•	•	0		

Synchro 10 Report Page 7 11/16/2018 CivTech BR

Smoke Tree Resort Existing PM

7: Apartment Drwy & Lincoln Dr HCM 6th TWSC

Intercontion													
Intersection	7.6												
IIII Delay, sveli	0.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	K	4₽		×	₩.			4		*		×.	
Traffic Vol, veh/h	7	792	41	9	111	6	99	က	47	7	0	34	
Future Vol, veh/h	7	792	41	9	111	6	99	m	47	7	0	34	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	1	1	None	1	1	None	1	1	None	1	1	None	
Storage Length	22	•	•	25	•	•	•	•	,	0	•	0	
Veh in Median Storage,	- #	0	•	1	0	1	1	0	1	,	0	,	
Grade, %	٠	0		•	0			0	٠	'	0		
Peak Hour Factor	8	06	06	06	8	8	06	8	06	8	06	06	
Heavy Vehicles, %	7	7	2	7	7	7	2	7	2	7	2	2	
Mvmt Flow	00	880	46	7	863	10	73	က	52	00	0	38	
				-		•							
	Majori		2	Major 2		_	MINOLI		2	MINOrz			
Conflicting Flow All	873	0	0	926	0	0	1365	1806	463	1340	•	437	
Stage 1	1	•	•	1	1	1	919	919		882			
Stage 2	•	1	,	'	1	1	446	887	'	458	'		
Critical Hdwy	4.14	•	1	4.14	•	•	7.54	6.54	6.94	7.54	1	6.94	
Critical Hdwy Stg 1	٠						6.54	5.54		6.54		٠	
Critical Hdwy Stg 2	ì	1	1	1	1	1	6.54	5.54	,	6.54			
Follow-up Hdwy	2.22		'	2.22			3.52	4.02	3.32	3.52		3.32	
Pot Cap-1 Maneuver	392		٠	734			106	78	546	111	0	292	
Stage 1	٠		•	•			292	348	٠	307	0		
Stage 2	1	1	1	1	1	1	291	360	1	222	0		
Platoon blocked, %		•	٠		•	•							
Mov Cap-1 Maneuver	768	•	1	734	1	1	46	76	546	96	1	292	
Mov Cap-2 Maneuver	•	•	•	•	•	•	4	9/	•	%	•	٠	
Stage 1	1	1	1	1	1	1	289	345	1	304	1		
Stage 2	•	•	•	1	1	1	519	326	•	489	•	٠	
Approach	EB			WB			BB			SB			
HCM Control Delay, s	0.1			0.1			109.5			17.6			
HCM LOS							ш			O			
Minor Lane/Major Mvmt	Z	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	WBR SBLn1 SBLn2	BLn2			
Capacity (veh/h)		144	299	•		734		•	96	292			
HCM Lane V/C Ratio	_	0.895	0.01	•	•	0.009		•	0.081 0.067	0.067			
HCM Control Delay (s)		109.5	6.7	1	1	9	1	1	45.8	11.8			
HCM Lane LOS		ш	A	,	,	A	•	•	ш	В			
HCM 95th %tile Q(veh)		6.1	0	•	1	0	•	1	0.3	0.2			

Synchro 10 Report Page 8 11/16/2018 CivTech BR

Int Delay, s/veh

8: AJ's Drwy & Lincoln Dr HCM 6th TWSC

Smoke Tree Resort Existing PM

9: Scottsdale Rd & Lincoln Dr

•	SBR	*	449	449	vo+mq	4	9	4		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5			None	86.2	99.0	0.46	6.6	0.0	6.6	V												
→	SBT	444	1461	1461	NA	9		9		10.0	16.0	57.0	43.8%	4.7	1.0	0.0	2.7	Lag		C-Max	9.99	0.44	0.73	33.6	0.0	33.6	O	29.5	ပ										
۶	SBL	F	26	99	Prot	-		-		2.0	11.0	14.0	10.8%	3.3	2.0	0.0	5.3	Lead		None	7.7	90:0	09:0	82.1	0.0	82.1	ш												
←	NBT	443	1514	1514	¥	2		2		10.0	16.7	73.0	56.2%	4.7	1.0	0.0	2.7	Lag		None	71.1	0.55	0.62	22.3	0.0	22.3	S	30.4	ပ									۵	
•	NBL	F	373	373	Prot	2		2		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5	Lead		None	19.9	0.15	0.79	64.2	0.0	64.2	ш										LOS: D	ICU Level of Service D	
ţ	WBT	₽	09	09	¥	∞		∞		7.0	13.0	13.0	10.0%	3.6	2.0	0.0	9.9			None	7.3	90.0	0.56	38.1	0.0	38.1	٥	52.1	O								Intersection LOS: D	:U Level (
/	WBL	*	54	24	Split	∞		∞		7.0	13.0	13.0	10.0%	3.6	2.0	0.0	9.9			None	7.3	90:0	0.61	84.9	0.0	84.9	ш						u				드	2	
<u> </u>	EBR	*	382	382	vo+mq	2	4	2		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5	Lead		None	43.7	0.34	0.74	29.5	0.0	29.5	S						t of Gree						
†	EBT	₩	54	24	NA	4		4		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5			None	23.9	0.18	0.91	85.1	0.0	85.1	ш	62.4	ш				SBT, Sta						
4	EBL	F	461	461	Split	4		4		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5			None	23.9	0.18	0.93	88.8	0.0	88.8	ш						phase 6:		linated		9	nn 77.5%	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effet Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Oueue Delay	Total Delay	ros	Approach Delay	Approach LOS	Intersection Summary	Cycle Length: 130	Actuated Cycle Length: 130	Offset: 0 (0%), Referenced to phase 6:SBT, Start of Green	Natural Cycle: 90	Control Type: Actuated-Coordinated	Maximum v/c Ratio: 0.93	Intersection Signal Delay: 36.6	Intersection Capacity Utilization 77.5%	Analysis Period (min) 15

- 6.94

Minor1 Minor2
0 1494 1933 466 1463
- 927 927 - 1002
- 567 1006 - 461
- 7.54 6.54 6.94 7.54
- 6.54 5.54 - 6.54
- 6.54 5.54 - 6.54
- 6.54 5.64 - 6.54
- 8.54 6.65 3.35
- 8.56 6.54 9.00
- 289 345 - 260
- 476 317 - 550

- 4.14

435

0

Major2 932

870

Major/Minor Conflicting Flow All Stage 1 - 3.32 0 569

2.22

Follow-up Hdwy 2.22 Pot Cap-1 Maneuver 770

Critical Hdwy Stg 1 Critical Hdwy Stg 2

Stage 2 Critical Hdwy 269

543

730

Stage 1 - Stage 2 - Platoon blocked, % Mov Cap-1 Maneuver 770

Mov Cap-2 Maneuver Stage 1 Stage 2

67 67 256 441

58 58 339 288

> 77 284 426

SB 30

NB 25.7

WB 0.8

0.1

Approach HCM Control Delay, s HCM LOS

0

Stop

Stop

Stop Stop

Free

Free Free

Free

25

Traffic Voly Jehn 11

Future Vol, vehn 11

Conflicting Peds, #hr 0

Sign Control Free F

RT Chamelked Storage Length 25

Storage Length 25

Grade, %
Peak Hour Factor 90

Heavy Vehicles, % 2

89 89 0 Stop

775

53

90

8 2 8

16

2

2 2

Splits and Phases: 9: Scottsdale Rd & Lincoln Dr

- 67 569 - 0.066 0.014 - 62.5 11.4

> 730 0.093 10.4 B

287 770 0.403 0.016 25.7 9.8

Capacity (veh.h.)
HCM Lane V/C Ratio
HCM Control Delay (s)
HCM Lane LOS
HCM 95th %tile Q(veh)

- F

1

71/16/2018 Synchro 10 Report Cu-Tech BR Page 9

11/16/2018 CivTech BR

Synchro 10 Report Page 10

9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

2 924 924 11585 44.9 924 24.9 924 924 924 924 11.00 0.54 924 11.00 0.54 924 11.00 11 1870 499 0.90 1.00 0.81 1.00 1.00 34.9 3.6 0.0 1.00 No 1870 2 2015 0.39 5106 2184 1623 1702 36.7 36.7 1461 56 0 0 00.1 62 0.90 2 79 0.04 1781 70.2 E 62 4.5 4.5 4.5 1.00 79 0.78 1.00 1.00 61.5 8.7 0.0 49 0.90 2 2 73 73 0.049 149 608 1844 193.7 0.08 954 1.00 0.06 1.4 0.00 00. 1.00 No 1870 1682 0.90 2491 0.49 5099 C 2145 33.4 0.68 1762 1.00 1.00 25.4 25.4 0.7 0.0 13.0 5.6 7.4 8.0 0.0 26.1 1123 1702 32.7 32.7 2 473 3456 414 11728 414 115.3 110.0 651 11.00 7.7 0.0 7.7 373 373 0 1.00 1.00 62.7 101.2 57.0 5.7 51.3 38.7 2.6 67 67 0 1.00 1.00 **4**9990 1.00 No 1870 67 0.90 2 101 0.06 7771 67 1777 4.8 4.8 101 100 1.00 1.00 60.1 12.2 0.0 2.5 72.3 201 23.3 5.5 24.5 17.3 0.5 0.99 60 00.90 2 2 2 2 101 101 1781 4.3 4.3 4.3 1.00 0.59 1101 101 101 100 100 2.1 30.0 5.5 24.5 26.5 0.0 50.8 D 39.6 D 385 385 1.00 1.00 1870 428 0.90 2 516 0.19 1585 428 124.5 24.5 1.00 516 0.83 516 1.00 1.00 1.00 1.00 1.00 0.00 0.0 983 55.2 1.00 No 0.90 0.00 0.00 0.00 0.0 0.0 0.0 0.0 69.2 5.7 67.3 34.7 2.7 t 461 461 0 1.00 1.00 1870 555 0.90 2 671 0.19 3563 555 1781 19.5 19.5 19.5 1.00 671 1.00 1.00 7.9 0.0 9.4 58.6 Max Green Setting (Gmax), s *8.7 Max O Clear Time (g_c+l1), s 6.5 Green Ext Time (p_c), s 0.0 Upstream Filler(I)
Uniform Delay (d), siveh
find Delay (d2), sweh
Initial O Delay(d3), siveh
Sile BackOfd(50%), vehin
Unsig, Movement Delay, siveh
LinGrp Delay(d), siveh Initial O (QD), we have a construction of the Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Grp Volume(v), vervin Grp Sat Flow(s), vervin Gro Serve(g. s), s Cycle O Clear(g. c), s Prop In Lane Lane Grp Cap(c), vervin V/C Ratio(X) Avait Cap(c. a), vervin HCM Platoon Ratio Approach Vol, veh/h Approach Delay, s/veh Approach LOS Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h) imer - Assigned Phs ntersection Summar HCM 6th Ctrl Delay HCM 6th LOS

User approved pedestrian interval to be less than phase max green. User approved volume balancing among the lanes for furning movement.

HCM 6th computational engine requires equal clearance times for the phases crossing the barrier

Synchro 10 Report Page 11

APPENDIX D

TRIP GENERATION

Trip Generation

February 2019 Appendix D

Proposed

Methodology Overview

This form facilitates trip generation estimation using data within the Institute of Transportation Engineer's (ITE) *Trip Generation Manual*, 10th Edition and methodology described within ITE's *Trip Generation Handbook*, 3rd Edition. These references will be referred to as *Manual and Handbook*, respectively. The *Manual* contains data collected by various transportation professionals for a wide range of different land uses, with each land use category represented by a land use code (LUC). Average rates and equations have been established that correlate the relationship between an independent variable that describes the development size and generated trips for each categorized LUC in various settings and time periods. The *Handbook* indicates an established methodology for how to use data contained within the Manual when to use the fitted curve instead of the average rate and when to adjustments to the volume of trips are appropriate and how to do so. The methodology steps are represented visually in boxes in Figure 3.1. This worksheet applies calculations for each box if applicable.

Box 1 - Define Study Site Land Use Type & Site Characteristics

The analyst is to pick an appropriate LUC(s) based on the subject's zoning/land use(s)/future land use(s). The size of the land use(s) is described in reference to an independent variable(s) specific to (each) the land use (example: 1,000 square feet of building area is relatively common).

Land Use Types and Size

Proposed Use	Amount Units	ITE LUC	ITE Land Use Name
Hotel and Lock-off Units	135 Rooms	310/330	Standard Hotel/Resort Hotel
Residential Units	30 Dwelling Units	220	Multifamily Housing (Low-Rise)
Quality Restaurant	3.500 1,000 square feet	931	Quality Restaurant

Box 2 - Define Site Context

Context assessment is to "simply determine whether the study sites is in a multimodal setting" and "could have persons accessing the site by walking, bicycling, or riding transit." This assessment is used in Box 4. The *Manual* separates data into 4 setting categories - **Rural, General Urban/Suburban**, **Dense Multi-Urban Use** and **Center City Core**. This worksheet uses the following abbreviations, respectively: **R**, **G**, **D**, and **C**. The *Manual* does not have data for all settings of all land use codes. See the table on the next page titled "Site Context and Time Periods" - if this table is not provided, the "General Urban/Suburban" setting is used by default.

Box 3 - Define Analysis Objectives Types of Trips & Time Period

This tool will focus on vehicular trips for a 24-hour period on a typical weekday as well as its AM peak hour and PM peak hour. Other time period(s) may be of interest.

Trip Generation

Proposed February 2019
Appendix D

Box 4 - Is Study Site Multimodal?

Per the Handbook, "if the objective is to establish a local trip generation rate for a particular land use or study site, the simplified approach (Box 9) may be acceptable but the Box 5 through 8 approach is required if the study site is located in an infill setting, contains a mix of uses on-site, or is near significant transit service."

Box 5/Box 9 - Estimate Baseline Trips/Estimate Vehicular Trips (Determine Equation)

Vehicle trips are estimated using rates/equations applicable to each LUC. When the appropriate graph has a fitted curve, the *Handbook* has a process (Figure 4.2) to determine when to use it versus using the weighted average rate or collecting local data. The methodology requires for engineering judgement in some circumstances and permits engineering judgement to override or make adjustments when appropriate to best project (example 1: study site is expected to operate differently than data in the applicable land use code - such as restaurant that is closed in the morning or in the evening; example 2: LUC data in a localized area fails to be represented by the typically selected fitted curve/weighted average rate - a small shop/LUC 820, AM peak hour is skewed by the high y-intercept).

Equation Type: Equation Used [Equated Rate] (Type Abbreviations: Weighted Average Rate ("WA"), Fitted Curve ("FC"), or Custom ("C"))

Proposed Use	ADT	AM Peak Hour	PM Peak Hour	(not used)
Hotel and Lock-off Units	WA: []	FC: T=0.38*X-28.58 [0.17]	FC: T=0.52*X-55.42 [0.11]	
Residential Units	FC: T=7.56*X-40.86 [6.20]	FC: LN(T)=0.95*LN(X)-0.51 [0.51]	FC: LN(T)=0.89*LN(X)-0.02 [0.67]	
Quality Restaurant	WA: T=X*83.84 [83.84]	WA: T=X*0.73 [0.73]	WA: T=X*7.8 [7.80]	

Box 5/Box 9 - Estimate Baseline Trips/Estimate Vehicular Trips (Apply Equations and in/out Distributions)

Baseline Vehicular Trips

·		AD	T			AM Pe	ak Hour			PM Pe	ak Hour		(not used)
Proposed Use	% In	In	Out	Total	% In	In	Out	Total	% In	In	Out	Total	
Hotel and Lock-off Units	50%	350	350	700	72%	38	15	53	43%	29	39	68	
Residential Units	50%	93	93	186	23%	3	12	15	63%	13	7	20	
Quality Restaurant	50%	147	147	294	0%	0	3	3	67%	18	9	27	
Totals		590	590	1,180		41	30	71		60	55	115	

Proposed

February 2019 Appendix D

Box 6 - Convert Baseline Vehicle Trips to Person Trips

If no vehicle trip reductions are to be applied, this portion may be ignored. The *Handbook* states "There are not enough samples to derive precise percentages by mode...however, for all but one, ...the motor vehicle percentage of total person trips is at least 96 percent." and "[vehicle occupancy for] many of the most commonly analyzed land use codes are not [available]." This form assumes that the total baseline vehicle trips for all land use codes accounts for 90% of total person trips. Unless otherwise specified, this form later reverses the conversion in Box 8.

Box 7 - Estimate Internal Person Trips, External Walk/Bike Trips, Transit Person Trips, External Person Trips (Internal Capture)

Internal capture occurs for mixed-use developments when a portion of the trips generated by the site are expected to have the both the origin and destination within the site. Internal capture is not dependent on mode choice. The table below presents the internal capture percentages and trips in units of vehicle trips. CivTech can provide trips in units of persons if requested.

Adjustments for Internal Trips

		AD	T			AM Pe	ak Hour			PM Pe	ak Hour		(not used)
Proposed Use	Percent	In	Out	Total	Percent	In	Out	Total	Percent	ln	Out	Total	
Hotel and Lock-off Units	0%	0	0	0	0%	0	0	0	0%	0	0	0	
Residential Units	0%	0	0	0	0%	0	0	0	0%	0	0	0	
Quality Restaurant	50%	74	74	148	50%	0	2	2	50%	9	5	14	
Totals		74	74	148		0	2	2		9	5	14	

Box 8 - Convert Person Trips to Final Vehicle Trips

The vehicle occupancy and baseline alternate mode are now factored out from the external trips in vehicles, after any adjustments for internal capture and additional alternate mode from Box 7. In Box 6, vehicle trips were considered to account for 90% of total person trips. Alternate mode trips in addition to the baseline, if any, are accounted for in Box 7. It is estimated that vehicle trips should be reduced by an additional 0% due to carpooling. The final external trips in vehicles is multiplied by 90% - 0% = 90% to produce the external vehicle trips.

External Vehicular Trips

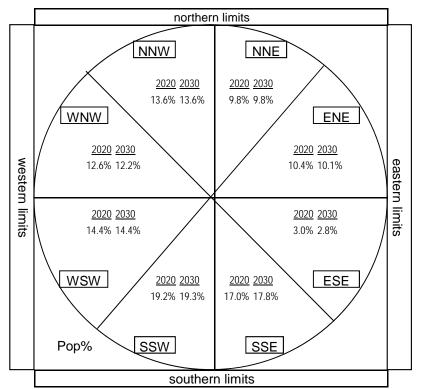
	AD	T		AM Pe	eak Hour		PM Pea	ak Hour		(not used)
Proposed Use	In	Out	Total	In	Out	Total	In	Out	Total	
Totals	516	516	1,032	41	28	69	51	50	101	

Box 10 - Estimate Vehicle Trip Subsets Pass-by/Diverted Trips, Truck Trips (Pass-By Trips)

Some trips may be classified as "pass-by" trips, where some vehicle trips generated by the study site are already traveling on an adjacent road and make a stop while passing by. These trips do not add traffic volume to the roadway. The *Handbook* does not specify that a 'pair' of pass-by trips must enter and exit the same driveway. The current edition of the *Handbook* indicates that pass-by trips should have directional distribution applied (%in/%out), though reviewers often comment when pass-by trip "pairs" do not occur within a the specified time period. This is likely due to ease of calculation and traditional methodology found in the first edition of the *Handbook*. As such, the analyst may ignore the direction distribution divide the total pass-by trip volume by 2 to apply pass-by "pairs". In addition, the analyst may consider pass-by rates at a reduced rate. Data is not available for all land use codes and all periods, assumtions are highlighted. The percentage is applied to total external vehicle trips.

APPENDIX E

TRIP DISTRIBUTION



		2020		2	030	
Quadrant	Population	Percent	Population	Percent		
North Northwest	65,355	13.6%	70,346	13.6%		
North Northeast	46,994	9.8%	50,587	9.8%		
North	112,348	23.4%	120,934	23.4%		
East Northeast	49,891	10.4%	52,124	10.1%		
East Southeast	14,233	3.0%	14,712	2.8%		
East	64,123	13.4%	66,836	12.9%		
South Southeast	81,730	17.0%	92,480	17.8%		
South Southwest	92,361	19.2%	99,928	19.3%		
South	174,091	36.2%	192,407	37.1%		
West Southwest	69,372	14.4%	74,834	14.4%		
West Northwest	60,317	12.6%	63,387	12.2%		
West	129,689	27.0%	138,221	26.6%		
Totals	480,252	100.0%	518,398	100.0%		

Radius

Population radius: 10 miles

Select Analysis Year (2020, 2030, 2040,2050) 2020

usted		ρŃ
1,956 6,209 5,583 3,647 1,706 1,487		_
-		
_		
_		
_		
-		
-		
-		2
-		je į
-		Page 2
-		_
-		
-		
-	th	
-	lor	
-	η	
-	roı	
-	n f	
-	ıtio	
-	nls	
_	do	
	Ч-	Ş
_	Distribution - Population from North	looTvio
50,587 20.934	uti	ţ
0,587	trik	ŕ
0,587	is	

0-mile	rauiu	2020	2030	% of	2020	2030			2020	2030	% of	2020	2030
	MPA	Population	Population	TAZ	Adjusted	Adjusted	RAZ	MPA	Population	Population	TAZ	Adjusted	Adjusted
MNN							NNE						
245	PH	57,570	59,845	30%	17,271	17,954	228	PH	17,962	39,116	5%		1,956
227	PH	56,483	67,265	5%	2,824	3,363	230	SC	33,607	41,394	15%	· ·	6,209
228	PH	17,962	39,116	10%	1,796	3,912	246	PH	60,062	62,330	25%		15,583
246	PH	60,062	62,330	70%	42,043	43,631	247	SC	13,321	13,647	100%		13,647
262	PV	14,198	14,871	10%	1,420	1,487	248	SC	37,661	39,019	30%		11,706
		-	-		-	-	262	PV	14,198	14,871	10%	1,420	1,487
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
Eron	NINI\A/	-	-		CE SEE	70 246	Fue-	n NINIT	-	-		46 004	- E0 E07
From From					65,355	70,346	Fron	n NNE			;	46,994 112,348	50,587 120,934

CivTech

	radiu	2020	2030	% of	2020	2030			2020	2030	% of	2020	2030
RAZ	MPA	Population	Population	TAZ	Adjusted	Adjusted	RAZ	MPA	Population	Population	TAZ	Adjusted	Adjusted
NE							ESE						
230	SC	33,607	41,394	5%	1,680	2,070	262	PV	14,198	14,871	5%	710	744
249	SC	21,657	22,818	40%	8,663	9,127	263	SC	36,704	37,882	35%	12,846	13,259
248	SC	37,661	39,019	70%	26,363	27,313	264	SR	6,766	7,102	10%	677	710
264	SR	6,766	7,102	5%	338	355			-	-		-	-
263	SC	36,704	37,882	35%	12,846	13,259			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			_	-		_	-
		_	_		_	_			_	_		_	_
		_	_		_	_			_	_		_	_
		_	_		_	_			_	_		_	_
		-	-		_	_			_	-		_	_
		-	-		-	-			_	-		_	-
		-	-		-	-			-	-		_	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
Eron	n ENE				49,891	52,124	Ero	n ESE	<u>-</u>			14,233	14,712
	n ENE n East				49,091	32,124	LIOI	11 E3E			;	64,123	66,836

		2020	2030	% of	2020	2030			2020	2030	% of	2020	2030
RAZ	MPA	Population	Population	TAZ	Adjusted	Adjusted	RAZ	MPA	Population	Population	TAZ	Adjusted	Adjusted
SSE							SSW						
262	PV	14,198	14,871	10%	1,420	1,487	262	PV	14,198	14,871	20%	2,840	2,974
263	SC	36,704	37,882	20%	7,341	7,576	271	PH	67,978	72,784	55%	37,388	40,031
272	SC	72,339	81,764	95%	68,722	77,676	272	SC	72,339	81,764	5%	3,617	4,088
264	SR	6,766	7,102	5%	338	355	276	PH	48,517	52,834	100%	48,517	52,834
288	TE	78,175	107,704	5%	3,909	5,385			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		_	-		-	-			<u>-</u>	_		-	-
		_	_		-	-			_	_		-	-
		_	_		_	_						_	_
		_	_		_	_			_	_		_	_
		_	_		_	_			_	_		_	_
		_	_		_	_			_	_		_	_
		_	_		_	_			_	_		_	_
		_	_		_	_			_	_		_	_
		_	_		_	_			_	_		_	_
		_	-		_	_			-	_		_	_
		-	-		-	_			-	-		_	-
		_	-		-	-			-	_		-	-
		-	-		-	-			-	-		_	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
												-	
Fror	n SSE				81,730	92,480	Fron	n SSW				92,361	99,928
From	South										į	174,091	192,407

	Tech
	Ċ.
(

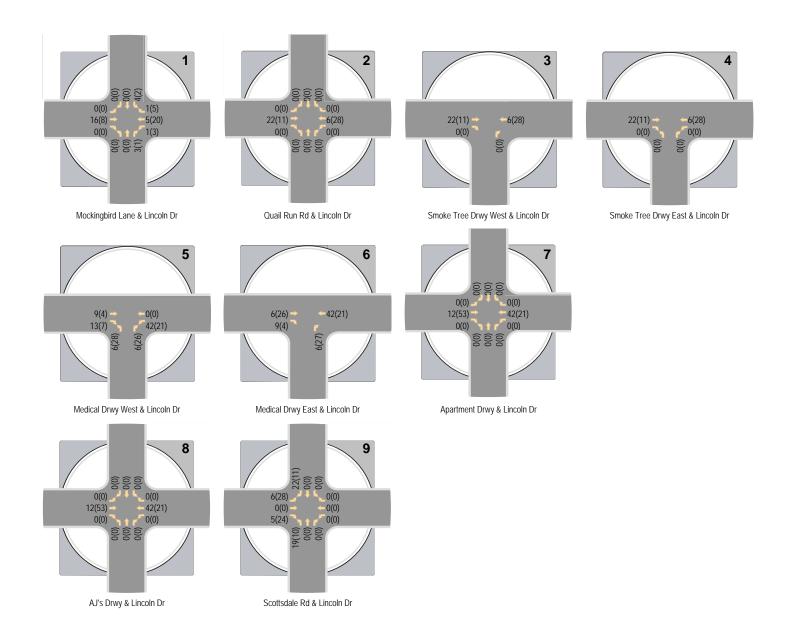
		2020	2030	% of	2020	2030			2020	2030	% of	2020	2030
RAZ	MPA	Population	Population	TAZ	Adjusted	Adjusted	RAZ	MPA	Population	Population	TAZ	Adjusted	Adjusted
vsw							WNW						
262	PV	14,198	14,871	25%	3,550	3,718	349	MC	391	416	100%	391	416
261	PH	35,232	38,363	100%	35,232	38,363	244	PH	55,833	59,925	35%	19,542	20,974
271	PH	67,978	72,784	45%	30,590	32,753	262	PV	14,198	14,871	20%	2,840	2,974
		-	-		-	-	246	PH	60,062	62,330	5%	3,003	3,117
		-	-		-	-	245	PH	57,570	59,845	60%	34,542	35,907
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		_	_		-	-			_	-		_	-
		_	_		-	-			_	_		_	_
		_	_		_	_			_	_		_	_
		_	_		_	_			_	_		_	_
		_	_		_	_			_	_		_	_
		-	-		_	_			-	_		_	_
		-	-		-	_			-	-		_	_
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
	WSW				69,372	74,834	From	WNW			:	60,317	63,387
From	West											129,689	138,221

APPENDIX F

BACKGROUND TRAFFIC

Background Traffic Calculations

Location of counts: Scottsdale Road between Indian Bend and Lincoln


Source(s): https://www.scottsdaleaz.gov/transportation/studies-reports/traffic-volume

				Expansion
			Avg Growth	Factor to
	Year	Volume	Rate to 2012	2012
Beginning	2012	43,500		
End	2014	45,000	1.7%	0.967

Growth Rate Used 1.7% Per-Year Multiplier 1.017

	Expansion	
Year	Factor(s)	
2018	1.000	
2019	1.017	
2020	1.034	<- Expansion factor to opening
2021	1.052	
2022	1.070	
2023	1.088	
2024	1.106	
2025	1.125	<- Expansion factor to 5 years after opening
2026	1.144	
2027	1.164	
2028	1.184	
2029	1.204	
2030	1.224	
2031	1.245	
2032	1.266	
2033	1.288	
2034	1.310	
2035	1.332	
2036	1.354	
2037	1.378	
2038	1.401	

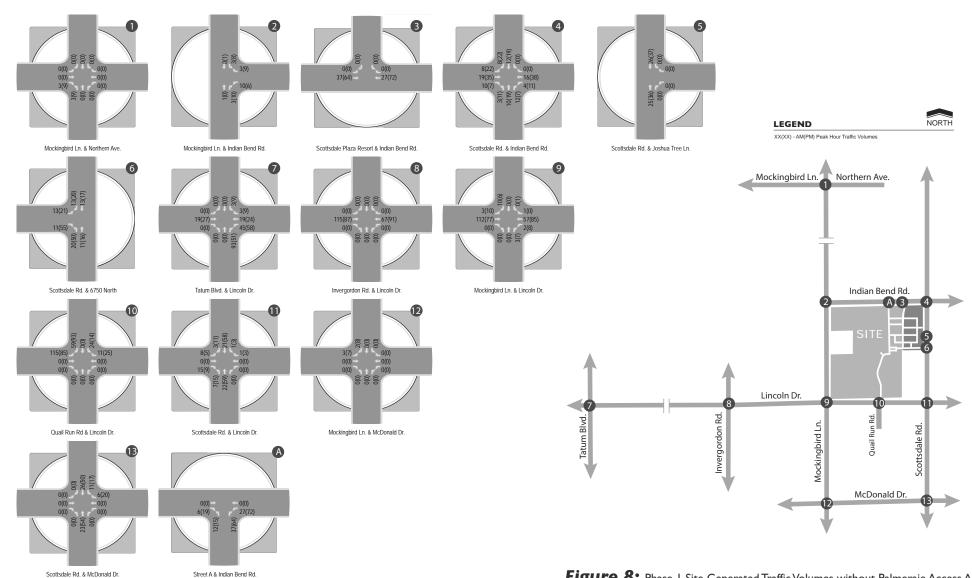


Figure 8: Phase I Site Generated Traffic Volumes without Palmeraie Access A

APPENDIX G

2020 PEAK HOUR ANALYSIS

Smoke Tree Resort 1: Mockingbird Ln & Lincoln Drive 2020 Background AM

	37	4	88	38	NA	8		8		7.0	ti.	0.	%	4.0	2.5	0.0	6.5			et.	.2	20	34	.2	0.0	.2	D	9.	D										
→	BL SBT	je.		3 9/			∞	m		3.5 7		9.0 53.0	3% 40.8%	3.0 4			4.0 6	ad	Yes	ne None	3.7 26.2	22 0.20	0.30 0.84			41.8 50.2	٥	48.6											
←	NBT SBI	2	34		NA pm+	4		4 3			33.5 8		9					_		None None						32.4 41	ပ	33.7	ပ								LOS: C	ICU Level of Service D	
•	NBL	r	2	2	Perm		4	4		7.0	33.5	44.0	33.8%	4.0	2.5	0.0	6.5	Lag	Yes	None	17.4	0.13	0.08	46.2	0.0	46.2	٥						Green				Intersection LOS: C	J Level of	
ţ	WBT	₩	890	890	Ϋ́	2		7		15.0	27.0	20.0	38.5%	4.5	1.5	0.0	0.9	Lag	Yes	C-Max	70.1	0.54	0.55	25.3	0.0	25.3	ပ	25.1	ပ				Start of (<u>ir</u>	ਹੁ	
>	WBL	r	23	23	Perm		2	2		15.0	27.0	20.0	38.5%	4.5	1.5	0.0	0.9	Lag	Yes	C-Max	70.1	0.54	0.10	18.3	0.0	18.3	В						d 6:EBTL,						
†	EBT	₽	971	971	ΑN	9		9		15.0	27.0	77.0	59.2%	4.5	1.5	0.0	0.9			C-Max	91.3	0.70	0.45	10.1	0.0	10.1	В	10.6	Ω				WBTL an						
•	EBL	r	222	222	pm+pt	-	9	-		3.5	8.0	27.0	20.8%	3.0	1.0	0.0	4.0	Lead	Yes	None	93.3	0.72	0.57	13.0	0.0	13.0	В						phase 2:1		linated		_	n 74.7%	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Queue Delay	Total Delay	ros	Approach Delay	Approach LOS	Intersection Summary	Cycle Lenath: 130	Actuated Cycle Length: 130	Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green	Natural Cycle: 90	Control Type: Actuated-Coordinated	Maximum v/c Ratio: 0.84	Intersection Signal Delay: 22.1	Intersection Capacity Utilization 74.7%	Analysis Period (min) 15

02/11/2019 CivTech BR

Smoke Tree Resort 2020 Background AM

1: Mockingbird Ln & Lincoln Drive HCM 6th Signalized Intersection Summary

			٠				-	-				
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
-ane Configurations	F	₽		F	₽ ₽		F	£\$		je.	2	
Fraffic Volume (veh/h)	222	97.1	30	23	890	42	2	34	22	16	88	233
-uture Volume (veh/h)	222	971	30	23	890	42	2	34	22	9/	88	233
nitial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		9			9			8			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	247	1079	33	26	686	47	9	38	24	84	86	259
Peak Hour Factor	0.00	06.0	06:0	06:0	06.0	06:0	06:0	06:0	06:0	06:0	0.00	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	397	2334	71	316	1919	91	88	184	116	313	109	289
Arrive On Green	0.08	99.0	99.0	0.56	0.56	0.56	0.17	0.17	0.17	0.04	0.24	0.24
Sat Flow, veh/h	1781	3520	108	203	3454	164	1024	1072	119	1781	454	1200
Grp Volume(v), veh/h	247	545	292	26	209	527	9	0	62	84	0	357
Grp Sat Flow(s),veh/h/ln	1781	1777	1851	203	1777	1841	1024	0	1749	1781	0	1654
2 Serve(g_s), s	7.4	19.4	19.4	3.4	23.2	23.2	0.7	0.0	4.0	2.0	0.0	27.2
Cycle Q Clear(g_c), s	7.4	19.4	19.4	8.8	23.2	23.2	18.9	0.0	4.0	2.0	0.0	27.2
Prop In Lane	1.00		90.0	1.00		60:0	1.00		0.39	1.00		0.73
-ane Grp Cap(c), veh/h	397	1178	1227	316	789	1023	88	0	300	313	0	398
//C Ratio(X)	0.62	0.46	0.46	0.08	0.52	0.52	0.07	0.00	0.21	0.27	0.00	0.90
Avail Cap(c_a), veh/h	276	1178	1227	316	786	1023	208	0	204	313	0	592
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Jpstream Filter(I)	1.00	1.00	1.00	0.56	0.56	0.56	1.00	0.00	1.00	1.00	0.00	1.00
Jniform Delay (d), s/veh	13.8	10.6	9.01	16.2	18.0	18.0	61.3	0.0	46.2	41.1	0.0	47.8
ncr Delay (d2), s/veh	1.6	1.3	1.3	0.3	1.	1.0	0.3	0.0	0.3	0.5	0.0	11.7
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.0	7.7	8.0	0.4	6.7	10.0	0.2	0.0	1.8	2.2	0.0	12.5
Jnsig. Movement Delay, s/veh												
_nGrp Delay(d),s/veh	15.4	12.0	11.9	16.5	19.1	19.0	9.19	0.0	46.6	41.5	0.0	59.5
LnGrp LOS	В	В	В	В	В	В	ш	A	۵	۵	A	ш
Approach Vol, veh/h		1359			1062			89			441	
Approach Delay, s/veh		12.6			19.0			47.9			56.1	
Approach LOS		В			В			D			ш	
Fimer - Assigned Phs	-	2	3	4		9		8				
Phs Duration (G+Y+Rc), s	14.0	78.2	0.6	28.8		92.2		37.8				
Change Period (Y+Rc), s	4.0	0.9	4.0	6.5		0.9		6.5				
Max Green Setting (Gmax), s	23.0	44.0	2.0	37.5		71.0		46.5				
Max Q Clear Time (g_c+I1), s		25.2	7.0	20.9		21.4		29.5				
Green Ext Time (p_c), s	9.0	7.1	0.0	0.2		8.6		2.2				
ntersection Summary												
HCM 6th Ctrl Delay			22.2									
			('/									


02/11/2019 Civ Tech BR

> Synchro 10 Report Page 1

Smoke Tree Resort 2: Quail Run Rd & Lincoln Drive 2020 Background AM

	1	1	>	ţ	←	•	-	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBL	SBT	
Lane Configurations	*	₩	*	₩	4	*	43	
Traffic Volume (vph)	115	1017	2	853	0	26	.0	
Future Volume (vph)	115	1017	2	853	0	26	0	
Turn Type	pm+pt	NA	Perm	NA	NA	Perm	ΑN	
Protected Phases	7	4		∞	2		9	
Permitted Phases	4		∞			9		
Detector Phase	7	4	∞	∞	2	9	9	
Switch Phase								
Minimum Initial (s)	3.5	15.0	15.0	15.0	7.0	7.0	7.0	
Minimum Split (s)	8.0	28.0	28.0	28.0	33.0	33.0	33.0	
Total Split (s)	20.0	94.0	74.0	74.0	36.0	36.0	36.0	
Total Split (%)	15.4%	72.3%	26.9%	26.9%	27.7%	27.7%	27.7%	
Yellow Time (s)	3.0	4.0	4.0	4.0	4.5	4.5	4.5	
All-Red Time (s)	1.0	2.5	2.5	2.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	6.9	6.9	6.5	0.9	0.9	0.9	
Lead/Lag	Lead		Lag	Lag				
Lead-Lag Optimize?	Yes		Yes	Yes				
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	
Act Effct Green (s)	64.0	61.5	46.2	46.2	26.0	26.0	26.0	
Actuated g/C Ratio	0.49	0.47	0.36	0.36	0.43	0.43	0.43	
v/c Ratio	0.53	89.0	0.02	0.76	0.01	0.02	0.00	
Control Delay	29.9	35.8	23.5	40.9	0.0	26.1	0.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	29.9	35.8	23.5	40.9	0.0	26.1	0.2	
TOS	O	۵	O		⋖	S	V	
Approach Delay		35.2		40.8			7.6	
Approach LOS		D		O			A	
Intersection Summary								
Cycle Lenath: 130								
Actuated Cycle Length: 130								
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green	phase 2:	NBTL an	d 6:SBTL	, Start of	Green			
Natural Cycle: 70								
Control Type: Actuated-Coordinated	dinated							
Maximum v/c Ratio: 0.76								
Intersection Signal Delay: 36.2	.2			_	ntersectio	Intersection LOS: D		
Intersection Capacity Utilization 64.6%	on 64.6%			⊻	CU Level	CU Level of Service C	e C	
Analysis Period (min) 15								

Splits and Phases: 2: Quail Run Rd & Lincoln Drive

02/11/2019 CivTech BR

Synchro 10 Report Page 3

Smoke Tree Resort 2020 Background AM

2: Quail Run Rd & Lincoln Drive HCM 6th Signalized Intersection Summary

Movement Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h)	Č											
Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h)	5	LDT	CDD	MDI	TOW	WDD	ION	TOIN	NDD	CDI	CDT	CDD
Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h)	EBL	EBI	EBK	WBL	WBI	WBK	NBL	NBI	NBK	SBL	SBI	SBK
Traffic Volume (veh/h) Future Volume (veh/h)		*		-	*			4		-	Ť	
Future Volume (veh/h)	115	1017	က	2	853	12	0	0	7	26	0	92
	115	1017	3	2	853	12	0	0	7	26	0	92
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		9			9			S N			S N	
Adj Sat Flow, veh/h/ln 1	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	128	1130	က	2	948	13	0	0	∞	56	0	72
Peak Hour Factor	06.0	0.00	06:0	06.0	06:0	06:0	06:0	06:0	06:0	06:0	06:0	0.90
h, %	7	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	210	1517	4	195	1161	16	0	0	177	737	0	771
Arrive On Green	0.13	0.83	0.83	0.22	0.22	0.22	0.00	00:0	0.49	0.49	0.00	0.49
Sat Flow, veh/h	1781	3636	10	497	3589	49	0	0	1585	1407	0	1585
Grp Volume(v), veh/h	128	552	581	2	469	492	0	0	∞	29	0	72
/ln	1781	1777	1869	497	1777	1862	0	0	1585	1407	0	1585
	6.1	17.7	17.7	0.4	32.7	32.7	0:0	0:0	0.3	1.4	0.0	3.2
Cycle Q Clear(g_c), s	6.1	17.7	17.7	5.9	32.7	32.7	0.0	0.0	0.3	1.7	0.0	3.2
Prop In Lane	1.00		0.01	1.00		0.03	0.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	210	741	780	195	575	602	0	0	177	737	0	771
	0.61	0.74	0.74	0.01	0.82	0.82	0.00	0.00	0.01	0.04	0.00	0.0
/h	317	1196	1258	292	923	196	0	0	171	737	0	771
0	2.00	2.00	2.00	0.67	19.0	0.67	1.00	1.00	1.00	1.00	1.00	1.00
	0.90	0.00	0.90	1.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00
e	28.8	7.7	7.7	39.0	47.2	47.2	0.0	0.0	17.2	17.7	0.0	17.9
Incr Delay (d2), s/veh	5.6	1.4	1.3	0.0	3.1	2.9	0.0	0.0	0.0	0.1	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.5	3.4	3.6	0.1	15.5	16.2	0.0	0:0	0.1	0.5	0.0	1.2
ay, s/veh												
y(d),s/veh	31.4	9.1	0.6	39.0	50.3	50.2	0.0	0.0	17.2	17.8	0.0	18.2
LnGrp LOS	ပ	A	A	۵	۵	Ω	A	A	В	В	A	B
Approach Vol, veh/h		1261			696			∞			101	
Approach Delay, s/veh		11.3			50.2			17.2			18.1	
Approach LOS		В			٥			В			В	
Timer - Assigned Phs		2		4		9	7	00				
Phs Duration (G+Y+Rc), s		69.3		60.7		69.3	12.2	48.6				
Change Period (Y+Rc), s		0.9		6.5		0.9	4.0	6.5				
Max Green Setting (Gmax), s		30.0		87.5		30.0	16.0	67.5				
Max Q Clear Time (g_c+I1), s		2.3		19.7		5.2	8.1	34.7				
Green Ext Time (p_c) , s		0.0		10.3		0.4	0.2	7.4				
Intersection Summary												
HCM 4th Chil Dalay			77.70									
HOM OUI CUI DEIGN			1.12									

02/11/2019 Synchro 10 Report CV7-ech BR Page 4

3: Smole Tree West & Lincoln Dr HCM 6th TWSC

Smoke Tree Resort 2020 Background AM

4: Smoke Tree East & Lincoln Dr $_{\mbox{\scriptsize HCM}}$ 6th TWSC

100000							
ntersection							
nt Delay, síveh	0						
Movement E	EBT 1	EBR	WBL	WBT	NBL	NBR	
SU	4₽		F	₩	À		
_	1047	2	0	863	0	0	
Future Vol, veh/h 1	1047	7	0	863	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	٠	None		None	
Storage Length		٠	25		0		
Veh in Median Storage, #	0	٠	٠	0	0	•	
3rade, %	0	٠		0	0		
Peak Hour Factor	06	8	06	06	06	8	
cles, %	7	7	7	7	7	2	
Mvmt Flow 1	1163	2	0	626	0	0	
Major/Minor Ma	Major1	≥	Major2	2	Minor1		
Conflicting Flow All	0	0	0 1165	0	0 1644	583	
Stage 1		٠	٠	٠	1164	•	
Stage 2	,	٠	•	•	480	•	
Critical Hdwy	÷	ŕ	4.14	1	6.84	6.94	
Critical Holwy Stg 1		٠	٠	٠	5.84		
Critical Holwy Stg 2	÷	1	1	1	5.84	1	
-ollow-up Hdwy	÷	٠	2.22	•	3.52	3.32	
Pot Cap-1 Maneuver	÷	÷	262	1	06	456	
Stage 1		٠	•	٠	259	1	
Stage 2	÷	ŕ	1	1	288	1	
Platoon blocked, %		٠		٠			
Mov Cap-1 Maneuver		٠	262	•	06	456	
Vov Cap-2 Maneuver		٠	•	٠	197	•	
Stage 1		•		•	259	1	
Stage 2	٠	٠	٠	•	288	1	
Approach	EB		WB		NB		
HCM Control Delay, s	0		0		0		
HCM LOS					A		
Minor Lane/Major Mvmt	S	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)			1	1	262	1	
HCM Lane V/C Ratio		٠	٠				
HCM Control Delay (s)		0	•		0	•	
HCM Lane LOS		⋖	٠		۷	•	
					:		

Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₹		F	‡	>	
Traffic Vol, veh/h	1049	0	· —	860	2	2
Future Vol, veh/h	1049	0		860	2	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free Free	Free	Free	Stop	Stop
RT Channelized	1	- None	1	- None	1	None
Storage Length			22		0	
Veh in Median Storage, #	0 # '	1	•	0	0	
Grade, %	0	•	•	0	0	
Peak Hour Factor	8	06	8	06	8	06
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1166	0		926	9	2
Major/Minor	Major1	2	Major2	2	Minor1	
low All	0	0	1166	0	0 1646	583
Stage 1	•	٠	1	٠	1166	
Stage 2	ľ	•	ľ		480	
Critical Hdwv	•	٠	4.14	٠	6.84	6.94
Critical Hdwy Stg 1	ľ				5.84	
Critical Hdwy Stg 2	1	1		•	5.84	
Follow-up Hdwy		•	2.22		3.52	3.32
Pot Cap-1 Maneuver	•	•	595	•	8	456
Stage 1		•	1	•	259	-
Stage 2	•	٠		•	288	
Platoon blocked, %	1	1		1		
Mov Cap-1 Maneuver	1	1	262	1	8	456
Mov Cap-2 Maneuver	1	1	1	1	197	
Stage 1	•	•		•	258	
Stage 2					288	
Approach	H		WR		N N	
UCM Control Dolay c	3 0				000	
HCM LOS	>		0		20.0	
)	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		235	1		595	
HCM Lane V/C Ratio		0.033	ľ		0.002	
HCM Control Delay (s)		20.8	•	1	11.1	
HCM Lane LOS		C	ľ	ľ	α	
)			د	

Synchro 10 Report Page 6

02/11/2019 CivTech BR

Synchro 10 Report Page 5

02/11/2019 CivTech BR

5: Lincoln Medical West & Lincoln Dr

6: Lincoln Medical East & Lincoln Dr Smoke Tree Resort 2020 Background AM

Smoke Tree Resort 2020 Background AM	. W					5: Lincoln Medical West & Lincoln Dr HCM 6th TWSC
Intersection						
Int Delay, síveh 0.4	4					
Movement EBT	T EBR	WBL	WBT	NBL	NBR	
igurations				>		
			854	9	6	
103		Ì		9	6	
eds, #/hr				0	0	
Sign Control Free		Pree.		Stop	Stop	
Storage Longth	2	, 70	Nore	۰ -	None	
Storage #						
	0	ľ	0	0		
r Factor		06		06	06	
,o	2 2			2	2	
Mvmt Flow 1149	9 19	47	949	7	10	
Major/Minor Major1	1	Major2		Minor1		
w All	0 0	1168	0	1728	584	
Stage 1		,	•	1159		
			1	269		
Critical Howy	1	4.14		6.84	6.94	
Critical Hdwy Stg 1	1		1	5.84		
Critical Howy Stg 2			1	5.84	' 4	
			1	3.52	3.32	
Pot Cap-1 Maneuver		594		6/	455	
		'	'	261		
Stage 2			•	230		
			1	ì	į	
		594		73	455	
ineuver			'	1/5		
				240		
siage z		'	'	230		
Approach EB	В	WB		NB		
rol Delay, s	0	0.5		18.8		
HCM LOS				U		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	277	ľ		294		
HCM Lane V/C Ratio	0.06		•	0.079		
HCM Control Delay (s)	18.8		1	11.6	·	
HCM Lane LOS	0 8		1	a 9		
HCM 95th %tile Q(veh)	0.7			0.3		

NRP		6	6	0	Stop	None				06	70	2		578			6.94		·	3.32	459				459				ı				WBT					
R	2		0		Stop		0	0	0	8	7 0		Minor1	1660	1150	510	6.84	5.84	5.84	3.52	88	264	298		87	1%	261	268	ă	12	2 00	1	WBL	009	0.009	11.1	В	C
WRT	*	968	968	0	Free:	None	1	0	0	06	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		_	0			1		1		1			1	1	•							EBR					•
WRI	1	2	2	0	Free	•	22	1		8	7 9		Major2	0 1156	•		4.14		1	2.22	009	,			009	•			WB	5 6	- -		EBT					•
FRP	Ę	-	Ħ	0		None	•	•	1	06	12	!	2	0	•	,	•		1	,	•	1	•	•	1	•		1					NBLn1	459	0.022	13	В	0 1
U. L	*	1030	1030	0	Free	1			0	8	1144		Major1	0					1		•			1	1	1			a a	3 0								
Int Delay, s/veh	l ane Confidentations	Traffic Vol. veh/h	Future Vol, veh/h	Conflicting Peds, #/hr	Sign Control	KI Channelized	Storage Length	Veh in Median Storage, #	Grade, %	Peak Hour Factor	Heavy Vehicles, %		Major/Minor N	Conflicting Flow All	Stage 1	Stage 2	Critical Hdwy	Critical Hdwy Stg 1	Critical Hdwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Stage 2	Platoon blocked, %	Mov Cap-1 Maneuver	Mov Cap-2 Maneuver	Stage 1	Stage 2	Approach	UCM Control Dolour o	HCM LOS		Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	HCM Control Delay (s)	HCM Lane LOS	HCM 95th %tile O(veh)

Synchro 10 Report Page 8

02/11/2019 CivTech BR

Synchro 10 Report Page 7

02/11/2019 CivTech BR

7: Apartment Drwy & Lincoln Dr

Smoke Tree Resort 2020 Background AM

8: AJ's Drwy & Lincoln Dr HCM 6th TWSC

Monorman	Intersection													
FBI FBI FBI WEI WBI NBI NBI NBI SBI SBI SBI NBI NBI NBI NBI SBI SBI SBI NBI NBI NBI SBI SBI SBI NBI NBI NBI NBI SBI SBI	Int Delay, síveh	9.2												
Note	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
National Part National Par	Lane Configurations	F	4₽		F	4₽			4		je-		¥	
Free Free Free Free Stop Stop Stop Stop Stop Stop Stop Stop	Traffic Vol, veh/h	27	616	35	19	836	10	25	0	30	2	0	12	
Name Color Name	Future Vol, veh/h	27	626	32	19	836	10	52	0	30	2	0	12	
Free	Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0		0	
None	Sign Control	Free	Free	Free		Free	Free	Stop		Stop	Stop		Stop	
Najert N	RT Channelized	•		None	•		None			None	٠		None	
# - 0 0 0 0 0 - 0 - 0 -	Storage Length		•		25	•	•	•	•	•	0	•	0	
10 0 0 0 0 0 0 0 0 0	Veh in Median Storag	# 10	0	•	1	0	•	1	0	٠	ì	0		
90 90 90 90 90 90 90 90	Grade, %	•	0	•	٠	0	•	٠	0	٠	٠	0		
2 2 2 2 2 2 2 2 2 2	Peak Hour Factor	06	8	06	8	06	8	06	8	8	06	8	06	
30 1088 39 21 929 11 58 0 33 6 0 34 1088 39 21 929 11 58 0 33 6 0 4-14 0 0 1177 0 0 1675 2150 564 1581 4-14 0 0 1177 0 0 1675 2150 564 1581 4-14 0 0 1177 0 0 1675 516 4-14 0 0 172	Heavy Vehicles, %	2	7	7	2	7	2	2	2	7	2	7	2	
Minor Major Minor Minor Minor	Mvmt Flow	30	1088	39	21	929	=	28	0	33	9	0	13	
940 0 0 1127 0 0 1675 2150 564 1581	Major/Minor	Major1			Major2		_	/linor1		2	linor2			
1.08	Conflicting Flow All	940	0	0	1127	0	0	1675	2150	564	1581	ŀ	470	
1.1 1.1 1.1 1.1 1.2 1.507 982 1.604 1.507	Stage 1	•						1168	1168		776			
4.14 4.14 7.54 6.54 6.94 7.54	Stage 2		ľ	ľ	'	ľ	ľ	207	982		604			
2.22	Critical Holwy	4.14	1	1	4.14	1	1	7.54	6.54	6.94	7.54		6.94	
1.05 0.4	Critical Hdwy Stg 1				•		٠	6.54	5.54	٠	6.54	٠		
722 222 352 402 332 352	Critical Hdwy Stg 2	•	1	1	1	1	1	6.54	5.54	1	6.54	•		
725 616 62 48 469 73 0	Follow-up Hdwy	2.22	•	•	2.22	•		3.52	4.02	3.32	3.52	٠	3.32	
1.05	Pot Cap-1 Maneuver	725			616		•	62	48	469	73	0	240	
1.5 1.5	Stage 1	•	•	•	1	•	•	206	266	٠	269	0		
725 616 57	Stage 2	•	•	•	•	•	•	516	325	•	452	0		
725 - 616 - 57 44 469 64 - 67 64 - 67 64 - 67 64 - 67 64 - 67 64 - 67 64 - 67 64 - 67 64 - 67 64 - 67 64 - 67 64 - 67 64 - 67 64 64 64 64 64 64 64 64 64 64 64 64 64	Platoon blocked, %			1			1							
NBLn EBL EBT EBR WBL WBT WBR SBLn1SBLn2	Mov Cap-1 Maneuver	725		•	616		•	~ 57	44	469	64	•	540	
FB WB NB SES 258	Mov Cap-2 Maneuver	•		1	•		1	~ 57	44	•	64	٠		
EB WB NB SB	Stage 1	•	1	1	1	1	1	198	255	1	258	•		
NB	Stage 2	•	•	•	'	•	•	486	314	•	403	٠		
0.3 0.2 212.8 F F F F F F F F F F F F F F F F F F F		i												
0.3 0.2 212.8 F F F F F F F F F F F F F F F F F F F	Approach				WB			NB			SB			
NBLn1 EBL EBT EBR WBL WBT WBRSBLn1 84 725 - 616 - 64 1085 0.041 - 0.034 - 0.087 21.8 10.2 - 11.1 - 6.65 F B - 6.5	HCM Control Delay, s HCM LOS				0.5			212.8 F			27.9 D			
NBLn1 EBL EBT EBR WBL WBT WBRSBLn1 84 725 - 616 - 64 1085 0.041 - 0.034 - 0.087 21.8 10.2 - 11.1 - 65 F B - 65											1			
84 725 616 64 1.085 0.041 0.034 0.087 2128 102 11, 66.5 F B B 66.5	Minor Lane/Major Mvr		JBLn1	EBL	EBT	EBR	WBL	WBT	WBRS	BLn1S	BLn2			
1.085 0.041 0.034 0.087 212.8 10.2 - 11.1 66.5 F B B F	Capacity (veh/h)		84	725	1		616	•	•	64	540			
212.8 10.2 - 11.11 - 66.5 F B - F F	HCM Lane V/C Ratio		1.085	0.041			0.034			0.087	0.025			
F B B F	HCM Control Delay (s	_	212.8	10.2	•		11.1		٠	999	11.8			
	HCM Lane LOS		ш	C			۵			L	c			

Synchro 10 Report Page 9
02/11/2019 CVTech BR

Notes -: Volume exceeds capacity S: Delay exceeds 300s +: Computation Not Defined :: All major volume in platoon

Synchro 10 Report Page 10 02/11/2019 CivTech BR

NBLn1 EBL EBT WBR WBL WBT WBRSBLn1SBLn2
244 718 - 617 - 62 535
0.219 0.005 - 0.079 - 0.072 0.25
238 10 - 0.113 - 675 119
C B - B - B - B
0.8 0 - 0.3 - 0.2 0.1

Minor Lane/Major Mwmt Capacity (vehh) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM Bane LOS

9: Scottsdale Rd & Lincoln Dr Timings Smoke Tree Resort 2020 Background AM

	1	†	~	>	ļ	•	-	٠	→	•	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	<u>r</u>	4	¥C.	je-	₩	F	4413	*	444	*	
Traffic Volume (vph)	450	38	460	37	36	295	1316	51	1669	109	
Future Volume (vph)	450	38	460	37	36	295	1316	21	1669	601	
Turn Type	Split	Ν	hm+ov	Split	NA	Prot	Ν	Prot	A	hm+ov	
Protected Phases	4	4	2	∞	∞	2	2	_	9	4	
Permitted Phases			4							9	
Detector Phase	4	4	2	∞	∞	2	2		9	4	
Switch Phase											
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	10.0	2.0	10.0	7.0	
Minimum Split (s)	13.0	13.0	13.0	13.0	13.0	13.0	16.7	11.0	16.0	13.0	
Total Split (s)	30.0	30.0	30.0	13.0	13.0	30.0	73.0	14.0		30.0	
Total Split (%)	23.1%	23.1%	23.1%	10.0%	10.0%	23.1%	56.2%	10.8%	43.8%	23.1%	
Yellow Time (s)	4.0	4.0	4.0	3.6	3.6	4.0	4.7	3.3	4.7	4.0	
All-Red Time (s)	1.5	1.5	1.5	2.0	2.0	1.5	1.0	2.0	1.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	9.9	9.9	5.5	2.7	5.3	5.7	5.5	
Lead/Lag			Lead			Lead	Lag	Lead	Lag		
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	None	None	None	None	C-Max	None	
Act Effct Green (s)	23.6	23.6	42.3	7.2	7.2	18.7	71.5	7.6	58.1	87.4	
Actuated g/C Ratio	0.18	0.18	0.33	90:0	90:0	0.14	0.55	90:0	0.45	0.67	
v/c Ratio	0.89	0.88	0.91	0.42	0.40	99.0	0.54	0.55	0.82	0.59	
Control Delay	81.3	80.8	47.0	72.5	33.9	58.8	20.4	79.0	35.9	10.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	81.3	80.8	47.0	72.5	33.9	28.8	20.4	79.0	35.9	10.8	
FOS	ш	ш	۵	ш	ပ	ш	O	ш	٥	В	
Approach Delay		64.5			45.7		27.3		30.4		
Approach LOS		ш			D		ပ		O		
Intersection Summary											
Cycle Length: 130											
Actuated Cycle Length: 130											
Offset: 0 (0%), Referenced to phase 6:SBT, Start of Green	phase 6:5	SBT, Sta	t of Green	_							
Natural Cycle: 90											
Control Type: Actuated-Coordinated	inated										
Maximum v/c Ratio: 0.91											
Intersection Signal Delay: 36.1	_			드	Intersection LOS: D	LOS: D					
Intersection Capacity Utilization 80.6%	%9.08 u			2	ICU Level of Service D	of Service	D				
Analysis Period (min) 15											

₹ Splits and Phases: 9: Scottsdale Rd & Lincoln Dr ▼ Ø6 (R) \$€ \$€

02/11/2019 CivTech BR

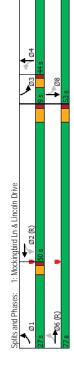
Synchro 10 Report Page 11

Smoke Tree Resort 2020 Background AM

9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

									,			
	•	†	<u> </u>	\	ţ	4	•	←	•	۶	→	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	K	4	×	K	4		KK	441		K	***	×
Traffic Volume (veh/h)	450	38	460	37	36	48	295	1316	39	21	1669	601
Future Volume (veh/h)	450	38	460	37	36	48	295	1316	39	21	1669	601
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		2			2			9			9 !	1
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	230	0	211	41	40	23	328	1462	43	22	1854	899
Peak Hour Factor	0.90	0.00	0.90	0.90	06:0	06:0	06:0	0.00	06:0	0.00	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	671	0	477	95	95	82	388	2382	70	73	2015	924
Arrive On Green	0.19	0.00	0.19	0.05	0.02	0.05	0.11	0.47	0.47	0.04	0.39	0.39
Sat Flow, veh/h	3563	0	1585	1781	1777	1585	3456	2098	150	1781	5106	1585
Grp Volume(v), veh/h	530	0	511	41	40	53	328	916	529	22	1854	999
Grp Sat Flow(s),veh/h/ln	1781	0	1585	1781	1777	1585	1728	1702	1843	1781	1702	1585
Q Serve(g_s), s	18.4	0.0	24.5	2.9	2.8	4.3	12.1	27.9	27.9	4.1	44.9	39.5
Cycle Q Clear(g_c), s	18.4	0.0	24.5	5.9	2.8	4.3	12.1	27.9	27.9	4.1	44.9	39.5
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.08	1.00		1.00
Lane Grp Cap(c), veh/h	671	0	477	96	95	82	388	1590	861	73	2015	924
V/C Ratio(X)	0.79	0.00	1.07	0.43	0.42	0.63	0.85	0.61	0.61	0.78	0.92	0.72
Avail Cap(c_a), veh/h	671	0	477	101	101	06	651	1762	954	119	2015	924
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	50.3	0.0	45.5	9.69	9.69	60.3	9.99	25.9	25.9	61.7	37.4	19.5
Incr Delay (d2), s/veh	2.8	0.0	61.9	1.1	1.1	8.2	2.2	0.3	9.0	6.5	8.4	4.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0:0	0:0	0.0
%ile BackOfQ(50%),veh/ln	80.0	0.0	23.4	1.3	1.3	1.9	5.4	11.3	12.3	2.0	20.0	23.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	56.1	0.0	107.4	8.09	60.7	68.4	28.8	26.2	26.5	68.2	45.8	24.4
Annroach Vol. veh/h	_	1041	-	_	134	١	1	1833)	_	25.70)
Approach Delay, skieh		813			63.8			32.1			40.7	
Approach LOS		<u>ı</u>			ш			O			۵	
	7	c		,	L	,		c				
Illinei - Assigned Pils	10 4	7 77	ı	4 00	201	0 0 0	ı	17 1	ı	ı	ı	
PIIs Dulation (G+1+RJ), s	0.0	4.00		0.00	70.1	0.70		0.7				
Change Perlod (Y+RC), S	5.0	7.0		U.C.	0.0	7.7		0.0				
Max O'Clear Time (a c.11) c	6.1	5.70		24.3	14.1	01.0		4.7				
Green Ext Time (p. c). s	0.0	2.2		0.0	0.5	1.9		0.0				
			ı				ı			ı	ı	
Intersection Summary												
HCM 6th Ctrl Delay			46.0									
HCIM OILI FOS												
Notes												

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for furning movement.


* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Q2/11/2019

CV/Tech BR

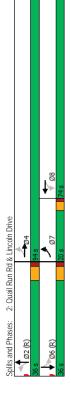
1: Mockingbird Ln & Lincoln Drive

	37	2	48	48	NA.	8		8		7.0	r.	0.	%	4.0	2.5	0.0	6.5			er.	.4	14	54	Т.	0.0	7.	S	33.2	<u>ي</u>										
→	SBL SBT	je.	62 4		_	33	80	co		3.5 7	8.0 33.5	9.0 53.0	6.9% 40.8%	3.0 4		0.0	4.0 6	Lead	Yes	None None	20.9 18.4	0.16 0.14	0.37 0.64	51.4 27.7		51.4 27.7	D	33											
-	NBT S	¢\$	62		NA pm	4		4 3		7.0	33.5		33.8% 6.9							_			0.54 0.	61.4 51		61.4 57	ш	8.09	ш								.OS: B	Service C	
•	NBL	<u>, -</u>	7	7	Perm		4	4		7.0	33.5	44.0	33.8% 3	4.0	2.5	0.0						0.09	0.09	54.9	0:0	54.9	D						Green				Intersection LOS: B	ICU Level of Service C	
ţ	WBT	₩₽	937	937	NA	2		2		15.0	27.0	20.0	38.5%	4.5	1.5	0.0	0.9	Lag	Yes	C-Max	76.2	0.59	0.54	19.4	0.0	19.4	В	19.2	В				, Start of (ħ	⊇	
>	WBL	je.	23	23	Perm		2	2		15.0	27.0	20.0	38.5%	4.5	1.5	0.0	0.9	Lag	Yes	C-Max	76.2	0.59	0.08	10.2	0.0	10.2	В						d 6:EBTL,						
†	EBT	₽	875	875	ΑN	9		9		15.0	27.0	77.0	59.2%	4.5	1.5	0.0	0.9			C-Max	99.1	0.76	0.37	6.1	0.0	6.1	A	7.2	A				WBTL an						
4	EBL	r	246	246	pm+pt	-	9	-		3.5	8.0	27.0	20.8%	3.0	1.0	0.0	4.0	Lead	Yes	None	101.1	0.78	0.58	11.3	0.0	11.3	В						phase 2:		linated		9	on 67.4%	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Queue Delay	Total Delay	TOS	Approach Delay	Approach LOS	Intersection Summary	Cycle Length: 130	Actuated Cycle Length: 130	Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green	Natural Cycle: 90	Control Type: Actuated-Coordinated	Maximum v/c Ratio: 0.64	Intersection Signal Delay: 16.6	Intersection Capacity Utilization 67.4%	Analysis Period (min) 15

02/11/2019 CivTech BR

Synchro 10 Report Page 1

Smoke Tree Resort 2020 Background PM


1: Mockingbird Ln & Lincoln Drive HCM 6th Signalized Intersection Summary

			•	-			-	-			-	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F	₽ ₽		F	₩		r	2		<u>r</u>	2	
Traffic Volume (veh/h)	246	875	29	23	937	63	7	62	18	62	48	156
Future Volume (veh/h)	246	875	29	23	937	63	7	62	18	62	48	156
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		0 1			0 1			2			2	į
Adj Sat Flow, veh/h/In	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	273	972	32	26	1041	70	∞	69	20	69	23	173
Peak Hour Factor	0.00	0.00	0.00	0.00	0.00	0.00	06:0	06:0	06:0	0.00	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	468	2610	98	416	2172	146	98	127	37	181	62	202
Arrive On Green	0.07	0.74	0.74	0.85	0.85	0.85	0.09	0.09	0.09	0.04	0.16	0.16
Sat Flow, veh/h	1781	3511	116	261	3379	227	1155	1394	404	1781	386	1258
Grp Volume(v), veh/h	273	492	512	26	547	564	∞	0	86	69	0	226
Grp Sat Flow(s),veh/h/ln	1781	1777	1850	261	1777	1829	1155	0	1798	1781	0	1644
Q Serve(g_s), s	6.4	12.8	12.8	6.0	8.6	8.6	6.0	0.0	6.2	4.5	0.0	17.4
Cycle Q Clear(g_c), s	6.4	12.8	12.8	6.0	8.6	8.6	9.3	0.0	6.2	4.5	0.0	17.4
Prop In Lane	1.00		90:0	1.00		0.12	1.00		0.22	1.00		0.77
Lane Grp Cap(c), veh/h	468	1321	1375	416	1142	1176	98	0	164	181	0	264
V/C Ratio(X)	0.58	0.37	0.37	90.0	0.48	0.48	0.09	0.00	0.54	0.38	0.00	0.86
Avail Cap(c_a), veh/h	929	1321	1375	416	1142	1176	314	0	519	181	0	588
HCM Platoon Ratio	1.00	1.00	1.00	1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.55	0.55	0.55	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	8.9	5.9	5.9	3.4	4.1	4.1	62.0	0.0	29.5	49.7	0.0	53.1
Incr Delay (d2), s/veh	1.2	0.8	0.8	0.2	0.8	0.8	0.5	0.0	2.8	1.3	0.0	7.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.4	4.6	4.8	0.1	2.8	2.9	0.3	0.0	2.9	2.1	0.0	7.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	8.0	6.7	6.7	3.6	4.9	4.9	62.5	0.0	59.3	51.0	0.0	61.0
LnGrp LOS	A	A	A	A	A	A	ш	A	ш	٥	A	Ш
Approach Vol, veh/h		1277			1137			4			295	
Approach Delay, síveh		7.0			4.8			59.5			58.7	
Approach LOS		A			A			ш			ш	
Timer - Assigned Phs	-	2	3	4		9		∞				
Phs Duration (G+Y+Rc), s	13.1	9.68	0.6	18.3		102.7		27.3				
Change Period (Y+Rc), s	4.0	0.9	4.0	6.5		0.9		6.5				
Max Green Setting (Gmax), s		44.0	2.0	37.5		71.0		46.5				
Max Q Clear Time (g_c+I1), s		11.8	6.5	11.3		14.8		19.4				
Green Ext Time (p_c), s	0.7	9.2	0.0	0.5		8.4		1.5				
Intersection Summary												
HCM 6th Ctrl Delay			10 /									
0.000			1.0									

02/11/2019 CivTech BR

Smoke Tree Resort 2: Quail Run Rd & Lincoln Drive 2020 Background PM

→	SBT	¢\$	0	0	N A	9		9		7.0	33.0	36.0	27.7%	4.5	1.5	0.0	0.9			C-Max	52.6	0.40	0.13	0.3	0:0	0.3	Α	4.1	А								Intersection LOS: C	ICU Level of Service B
۶	SBL	F	14	14	Perm		9	9		7.0	33.0	36.0	27.7%	4.5	1.5	0.0	0.9			C-Max	52.6	0.40	0.03	28.5	0.0	28.5	ပ						reen				ersection) Level (
←	NBT	4	0	0	NA	2		2		7.0	33.0	36.0	27.7%	4.5	1.5	0.0	0.9			C-Max	52.6	0.40	0.00	0.0	0.0	0.0	A						Start of G				in in	ᅙ
ţ	WBT	₩.	929	929	NA	∞		∞		15.0	28.0	74.0	26.9%	4.0	2.5	0.0	6.5	Lag	Yes	None	20.7	0.39	0.77	38.2	0.0	38.2	۵	38.2	۵				6:SBTL,					
†	EBT	₩.	988	988	NA	4		4		15.0	28.0	94.0	72.3%	4.0	2.5	0.0	6.5			None	64.9	0.50	0.56	35.1	0.0	35.1	۵	34.7	O				JBTL and					
•	EBL	<u></u>	82	82	pm+pt	7	4	7		3.5	8.0	20.0	15.4%	3.0	1.0	0.0	4.0	Lead	Yes	None	67.4	0.52	0.42	30.0	0.0	30.0	S						phase 2:N		dinated		.7	on 60.3%
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Queue Delay	Total Delay	LOS	Approach Delay	Approach LOS	Intersection Summary	Cycle Length: 130	Actuated Cycle Length: 130	Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green	Natural Cycle: 70	Control Type: Actuated-Coordinated	Maximum v/c Ratio: 0.77	Intersection Signal Delay: 34.7	Intersection Capacity Utilization 60.3% Analysis Period (min) 15

02/11/2019 Synchro 10 Report CivTech BR Page 3

Smoke Tree Resort 2020 Background PM

2: Quail Run Rd & Lincoln Drive HCM 6th Signalized Intersection Summary

Chebric Cheb		4	†	~	>	ţ	√	•	←	•	٠	→	•
No.	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Bi Bi Bi 1	Lane Configurations	F	₩		F	₩			4		F	2,	
85 886	Traffic Volume (veh/h)	82	988	-	0	929	25	0	0	2	14	0	93
ach 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Future Volume (veh/h)	82	988	-	0	929	25	0	0	2	14	0	93
100 100 100 100 100 100 100 100 100 100	Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
ach 100 100 100 100 100 100 100 100 100 10	Ped-Bike Adj(A_pbT)	1.00	1	1.00	1.00	1	1.00	1.00	1	0.1	1.00		1.00
ach 1870 1870 1870 1870 1870 1870 1870 1870	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1870 1870	Work Zone On Approach	0	0 0 0	0	0	0 0 0	0	0	0 S	0	0	0 N	0
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
6 90 090 090 090 090 090 090 090 090 090	Adj Flow Rate, veh/h	94	984	-	0	1032	58	0	0	5	91	0	103
6, 183 1554 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Peak Hour Factor	0.90	0.00	0.90	0.00	0.00	0.00	0.00	06:0	0.90	0.00	0.90	0.90
183 1554 2 55 1230 33 0 0 0 756 730 1781 1872 1876 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
0.10 0.85 0.85 0.00 0.35 0.35 0.00 0.00 0.048 0.	Cap, veh/h	183	1554	2	22	1230	33	0	0	756	730	0	756
1781 3643 4 571 3534 96 0 0 1585 1415 Mn 1781 71870 505 0 519 541 0 0 1585 1415 4.3 11.2 11.2 0.0 35.0 35.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0	Arrive On Green	0.10	0.85	0.85	0.00	0.35	0.35	0.00	0.00	0.48	0.48	0.00	0.48
94 480 505 0 519 541 0 0 2 16 173 177 1870 571 1777 1853 0 0 1585 1415 4.3 11.2 11.2 0.0 350 350 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0	Sat Flow, veh/h	1781	3643	4	571	3534	96	0	0	1585	1415	0	1585
1781 1777 1870 571 1777 1853 0 0 1585 1415	Grp Volume(v), veh/h	94	480	202	0	519	541	0	0	2	16	0	103
O, s. 4.3 11.2 11.2 0.0 35.0 35.0 0.0 0.0 0.1 0.8 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Grp Sat Flow(s),veh/h/ln	1781	1777	1870	571	1777	1853	0	0	1585	1415	0	1585
4.3 11.2 11.2 0.0 35.0 35.0 0.0 1.00 1.	Q Serve(g_s), s	4.3	11.2	11.2	0.0	35.0	35.0	0.0	0.0	0.1	0.8	0.0	4.7
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	Cycle Q Clear(g_c), s	4.3	11.2	11.2	0.0	35.0	35.0	0.0	0.0	0.1	6.0	0.0	4.7
183 758 798 55 619 645 0 0 0 756 730 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Prop In Lane	1.00		0.00	1.00		0.05	0.00		1.00	1.00		1.00
051 063 063 0.00 084 084 0.00 0.00 0.00 0.00 0.00 0	Lane Grp Cap(c), veh/h	183	758	798	22	619	645	0	0	756	730	0	756
317 1196 1258 153 923 962 0 0 756 730 200 200 200 100 1100 100 100 100 100 1	V/C Ratio(X)	0.51	0.63	0.63	0.00	0.84	0.84	0.00	0.00	0.00	0.02	0.00	0.14
200 200 100 100 100 100 100 100 100 100	Avail Cap(c_a), veh/h	317	1196	1258	153	923	962	0	0	756	730	0	756
286 6.3 6.0 300 100 000 000 100 100 C 286 6.3 6.0 390 390 00 00 178 180 C 2.1 08 08 00 45 43 00 00 00 178 180 C 00 00 00 00 00 00 00 00 00 00 00 00 00	HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1:00	1.00	1:00
28.6 6.3 6.3 0.0 390 390 0.0 0.0 17.8 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Upstream Filter(I)	0.93	0.93	0.93	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00
2.1 0.8 0.8 0.0 4.5 4.3 0.0 0.0 0.0 0.1 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Uniform Delay (d), s/veh	28.6	6.3	6.3	0.0	39.0	39.0	0:0	0.0	17.8	18.0	0.0	19.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Incr Delay (d2), s/veh	2.1	0.8	0.8	0.0	4.5	4.3	0.0	0.0	0.0	0.1	0.0	0.4
18 2.5 2.6 0.0 15.9 16.6 0.0 0.0 0.0 0.3 30.7 7.1 7.1 0.0 43.5 43.3 0.0 0.0 17.8 181 C A A A D D A A B B 1079 1060 2.2 2 4 6 7 8 6.0 6.2 0 68.0 10.2 51.8 6.0 6.5 6.0 40 6.5 2.1 13.2 6.7 6.3 37.0 0.0 8.2 0.6 0.1 8.3 25.7 C C C A A B B B B B B B B B B B B B B B B B B	Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0:0	0.0
30.7 7.1 7.1 0.0 43.5 43.3 0.0 0.0 17.8 181 C A A A D D D A B B B 1079 1060 2 8 9.1 43.4 17.8 A B B B B 1 1060 2 8 C A A A B B B 1 1060 2 8 C A A B B B 1 1080 2 8 C A A B B B 1 1080 2 8 C A B B B 1 17.8 17.8 17.8 1 17.8 17.8 1 17.8 17.8 1 17.8 17.8 1 17.8 1 17.8 1 18.2 6.0 4.0 6.5 1 18.2 6.0 6.5 2 1 18.2 6.7 6.3 37.0 2 2 1 18.2 6.7 6.3 37.0 2 2 1 18.2 6.7 6.3 37.0 2 2 1 18.2 6.7 6.3 37.0 2 2 2 2 3 37.0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	%ile BackOfQ(50%),veh/ln	0.0	2.5	5.6	0.0	15.9	16.6	0.0	0.0	0.0	0.3	0.0	1.8
30.7 7.1 7.1 0.0 43.5 43.3 0.0 0.0 17.8 18.1 C A A A B B B C O O O O O O O O O O O O O O O O	Unsig. Movement Delay, s/veh		1	1	0			d	c	1	1	c	
C A A A D D A A B B B B 1079 1060 2 2 8 8 8 8 9 9 1 8 9 9 1 8 9 9 9 9 9 9 9 9	LnGrp Delay(d),s/ven	30.7	Γ.,	F. «	0.0	43.5	43.3	0.0	0.0	8./		0.0	19.4
10/9 1060 2 4 A D B B 2 4 6 7 8 68.0 62.0 68.0 10.2 51.8 6.0 6.5 6.0 4.0 6.5 30.0 87.5 30.0 16.0 6.7.5 2.1 13.2 6.7 6.3 37.0 0.0 8.2 0.6 0.1 8.3	LNGrp LOS	د	V S	⋖	⋖	٦	اد	⋖	Α (20	20	V,	2
9.1 43.4 17.8 A	Approach Vol, veh/h		1079			1060			2			119	
A D B B 2 4 6 7 8 68.0 62.0 68.0 10.2 518 6.0 6.5 6.0 4.0 6.5 30.0 87.5 30.0 16.0 67.5 0.0 8.2 0.6 0.1 8.3 25.7 C.	Approach Delay, sweh		9.1			43.4			17.8			19.2	
25.7 25.7 2.1 25.7 2.1 25.7 2.2 2.3 25.7 25.7 25.7 26.0 27.0 28.0 29.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	Approach LOS		⋖			٥			œ			B	
68.0 62.0 68.0 10.2 E 6.0 65 60 4.0 30.0 87.5 30.0 16.0 6 2.1 13.2 6.7 6.3 5 0.0 8.2 0.6 0.1	Timer - Assigned Phs		2		4		9	7	∞				
6.0 6.5 6.0 4.0 3.0 87.5 6.0 4.0 2.1 13.2 6.7 6.3 3 0.0 8.2 0.6 0.1 25.7	Phs Duration (G+Y+Rc), s		0.89		62.0		0.89	10.2	51.8				
30.0 87.5 30.0 16.0 2.1 13.2 6.7 6.3 0.0 8.2 0.6 0.1 25.7	Change Period (Y+Rc), s		0.9		6.5		0.9	4.0	6.5				
2.1 13.2 6.7 6.3 0.0 8.2 0.6 0.1 25.7 C	Max Green Setting (Gmax), s		30.0		87.5		30.0	16.0	67.5				
e (p_c), s 0.0 8.2 0.6 0.1 nimany 25.7 Delay C.	Max Q Clear Time (g_c+I1), s		2.1		13.2		6.7	6.3	37.0				
ımmary Jelay	Green Ext Time (p_c), s		0.0		8.2		9.0	0.1	8.3				
Delay	Intersection Summary												
	HCM 6th Ctrl Delay			25.7									
	HCM 6th LOS			U									

02/11/2019 CivTech BR

Intersection Int Delay, s/veh

- None

Lane Configurations 4.6.
Traffic Vol, vehh 902
Conflicting Peds, #hr 0
Sign Conford
R T Chamelized - No
Storage Leight - No
Veh in Medan Storage, # 0
Grade, % 0
Peak Hour Factor 90
Heavy Vehicles, % 2
Mwmt Flow

Major1

Major/Minor M
Conflicting Flow All
Stage 1
Stage 2
Critical Howy
Critical Howy Sig 1
Critical Howy Sig 2
Critical Howy Sig 2
Critical Howy Poly
Pol Cap-1 Maneuver

3: Smole Tree West & Lincoln Dr HCM 6th TWSC

530 - 6.84 6.94 - 5.84 - 5.84 - 3.52 3.32 - 107 5T - 315 - 555 0 2 9 515 502 WBL WBT 107 227 315 555 0 0 0 0 0 0 0 Minor1 0 1533 - 1003 NB 0 A 2 2 0 1059 EBR 0 % - 4.14 Major2 0 1003 2.22 06 989 WB NBLn1 EBT

EB 0

Approach HCM Control Delay, s HCM LOS

Slage 1 Slage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Slage 1 Slage 2

Minor LaneMajor Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM Lane LOS

02/11/2019 CivTech BR

Synchro 10 Report Page 6

02/11/2019 CivTech BR

Synchro 10 Report Page 5

Smoke Tree Resort 2020 Background PM

4: Smoke Tree East & Lincoln Dr HCM 6th TWSC

Int Delay, s/veh	0		i l		l		
Movement	EBT	EBR	WBL	WBT	NBL	NBR	~
Lane Configurations	₽		F	‡	>		
Traffic Vol, veh/h	901	-	2	953	7	2	2
Future Vol, veh/h	901	-	2	953	2	2	2
Conflicting Peds, #/hr	0	0	0	0	0	0	C
	Free	Free	Free	Free	Stop	Stop	α.
RT Channelized		None		None		None	n
Storage Length		٠	22	٠	0	ľ	
Veh in Median Storage, #	0 #	1		0	0	1	
Grade, %	0	٠	'	0	0	ľ	
Peak Hour Factor	8	06	8	06	8	8	C
Heavy Vehicles, %	7	2	7	2	7	2	2
Mvmt Flow	1001		2	1059	2	2	2
Major/Minor Ma	Major1	2	Major2	2	Minor1		
Conflicting Flow All	0	0	0 1002	0	0 1536	501	
Stage 1		٠	1	٠	1002	ľ	
Stage 2	1	•	'	'	534	ľ	
Critical Hdwy			4.14		6.84	6.94	4
Critical Hdwy Stg 1	1	•	ľ	•	5.84	ľ	
Critical Hdwy Stg 2					5.84	ľ	
Follow-up Hdwv		ľ	2.22	ľ	3.52	3.32	2
Pot Cap-1 Maneuver			687	٠	107	515	
Stane 1		ľ	'	ľ	316	,	
Stane 2					552		
Platoon blocked %	ľ			ľ	700		
May Can 1 Managara			497		107	7	LE
Mov Cap-1 Maireuvel			100		107	5	, and the second se
Mov Cap-2 Maneuver	٠	١	۱	١	177		
Stage 1			•	•	315		
Stage 2	•	•	•	•	222		
Approach	EB		WB		BB		
HCM Control Delay, s	0		0		16.6		
HCM LOS					ပ		
Minor Lane/Major Mvmt	~	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		315		•	189		
HCM Lane V/C Ratio		0.014			- 0.003	ľ	
HCM Control Delay (s)		16.6	•	•	10.3		
HCM Lane LOS		U	,	,	В	ľ	

5: Lincoln Medical West & Lincoln Dr

EBT 918 0.2

Int Delay, s/veh

6: Lincoln Medical East & Lincoln Dr

Intersection							
nt Delay, s/veh	0.7						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	₹		r	‡	>		
Traffic Vol, veh/h	968	7	21	925	30	26	
Future Vol, veh/h	968	7	21	925	30	79	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None	1	None		None	
Storage Length	٠	٠	25	٠	0	٠	
Veh in Median Storage,	##	1	1	0	0	1	
Grade, %	0	•		0	0	•	
Peak Hour Factor	06	8	06	8	8	8	
Heavy Vehicles, %	2	2	2	2	2	2	
Vivmt Flow	966	∞	23	1028	33	53	
Major/Minor M	Major1	2	Major2	2	Minor1		
low All	0	0	0 1004	0	0 1560	502	
Stage 1	٠	٠		٠	1000		
Stage 2	٠		'		260		
Critical Hdwy	٠		4.14	٠	6.84	6.94	
Critical Hdwy Stg 1	٠	٠		٠	5.84	٠	
Critical Hdwy Stg 2	٠	•	1	•	5.84		
Follow-up Hdwy	٠	٠	2.22	٠	3.52	3.32	
Pot Cap-1 Maneuver	ì	1	989	1	103	515	
Stage 1	٠	•	•	٠	317	•	
Stage 2	٠	1	1	1	535	1	
Platoon blocked, %	٠	•		٠			
Mov Cap-1 Maneuver	٠	•	989	•	66	515	
Mov Cap-2 Maneuver	٠	•	•	٠	216	•	
Stage 1		1	1		306		
Stage 2	٠	٠	•	٠	535	٠	
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.2		20.4		
HCM LOS					U		
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		296	1	•	989	1	
HCM Lane V/C Ratio		0.21	•	٠	0.034	•	
HCM Control Delay (s)		20.4	1	•	10.4	•	
HCM Lane LOS		(
		ر			Ω		

Movement	EBT	EBR	WBL	WBT	NBL	NBR	3
Lane Configurations	₹		F	\$	>-		
Traffic Vol, veh/h	918	4	0	945	2	30	0
Future Vol, veh/h	918	4	0	945	7	8	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop	a
RT Channelized	-	None	٠	None	٠	None	. Ф
Storage Length	٠	٠	22	٠	0	ľ	
Veh in Median Storage, #	0 #	1	1	0	0	ľ	
Grade, %	0	٠		0	0	ľ	
Peak Hour Factor	06	06	8	06	8	8	0
Heavy Vehicles, %	2	7	7	7	2	7	2
Mvmt Flow	1020	4	0	1050	2	33	3
Major/Minor M	Major1	≥	Major2	2	Minor1		
Conflicting Flow All	0	0	1024	0	1547	512	2
Stage 1	٠	٠	٠	٠	1022	·	
Stage 2	٠	٠	٠	٠	525	ľ	
Critical Hdwy	٠	٠	4.14	٠	6.84	6.94	4
Critical Hdwy Stg 1	٠	٠	٠	٠	5.84	ľ	
Critical Hdwy Stg 2	÷	٠	٠	٠	5.84	Ċ	
Follow-up Hdwy	٠	٠	2.22	٠	3.52	3.32	2
Pot Cap-1 Maneuver	٠	٠	674	٠	105	507	7
Stage 1	٠	٠	•	•	308		
Stage 2	•	1	1	1	228	Ċ	
Platoon blocked, %	•	,		,			
Mov Cap-1 Maneuver	ì	1	674	1	105	507	7
Mov Cap-2 Maneuver	٠	٠	•	٠	224		
Stage 1	ŕ	1	1	1	308		
Stage 2	٠	٠	٠	٠	228		
Approach	EB		WB		NB		
HCM Control Delay, s	0		0		13.3		
HCM LOS					Ω		
Minor Lane/Major Mvmt		NBI n1	FRT	FRR	WBI	WRT	
Capacity (veh/h)		470					
HCM Lane V/C Ratio		9.000	ŀ	ľ		ľ	
HCM Control Delay (s)		13.3	٠		0	·	
HCM Lane LOS		В			⋖	ľ	
HCM 95th %tile Q(veh)		0.2	٠	٠	0	·	

Synchro 10 Report Page 8

02/11/2019 CivTech BR

Synchro 10 Report Page 7

02/11/2019 CivTech BR

7: Apartment Drwy & Lincoln Dr HCM 6th TWSC

Smoke Tree Resort 2020 Background PM

nt Delay, s/veh

8: AJ's Drwy & Lincoln Dr HCM 6th TWSC

Stop

Stop 0

Stop

Free

55 55 0 Free None

Lane Configurations Traffic Vol. vehh 11
Frutine Vol. vehh 11
Conflicting Pees, #/hr 0
Sign Control
Sign Control
Storage Length 25
Veh in Median Storage, # Grade, % Peak Hour Factor 90
Heavy Vehicles, % 2
Mmit Flow 12

880 880 0 Free

0 O Stop

92 92 0 Stop

847 847 63 63 0 Free 8

0 7 0

90 2 102 . 0 0 8 4 -

2 2 1

61 2 90

0 0 90 2 2 941

6.94

Minor2 1600 1086 514 7.54 6.54 6.54 3.52 71 231

2123 11033 11090 6.54 5.54 4.02 49 308 289

2.22

2.22

Majorfulinor Mal
Conflicting Flow All
Stage 1
Stage 1
Stage 2
Critical Hdwy Stg 1
Critical Hdwy Stg 1
Critical Hdwy 2
Fortown Hdwy 2
Fortown

6.94

- 4.14

3.32

. 0

3.32

536

501

999

719

50 50 227 398

43 43 303 259

59 245 395

S 8 3 3 €

NB 33.7

WB 0.8

0.1

Approach HCM Control Delay, s HCM LOS

475

520

Major2 1039

0

0

Major1 950

2020 Background PM	요 고												HCM 6th 1WSC
acito conclui													
Intersection Int Delay skieh	13.1												
Movement	<u> </u>	FRT	EBD	IMM	WRT	WBD	IBN	MRT	MBD	as	CRT	CBD	
Lane Configurations	, k	4	Ę	*	4	Š	305	4		- A	5	¥.	
Traffic Vol, veh/h	_	886	42	9	849	6	89	c	49	_	0	35	
Future Vol, veh/h	7	988	42	9	849	6	89	co	49	7	0	35	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	1	1	None	1	1	None			None			None	
Storage Length	22	1	٠	22	1	٠				0		0	
Veh in Median Storage,	*	0	•	•	0	•	•	0	•	•	0	·	
Grade, %	٠	0	٠		0	٠	'	0		•	0		
Peak Hour Factor	06	8	06	8	06	8	06	8	8	06	8	06	
Heavy Vehicles, %	7	7	2	7	7	2	7	7	7	7	7	2	
Mvmt Flow	00	984	47	7	943	10	16	3	24	∞	0	39	
Major/Minor Ma	Major1		2	Major2		2	Minor1		_	Minor2			
Conflicting Flow All	953	0	0	1031	0	0	1510	1991	516	1472	١.	477	
Stage 1	٠						1024	1024		962		·	
Stage 2			•			•	486	296		210			
Critical Hdwy	4.14	•	•	4.14	•	•	7.54	6.54	6.94	7.54	٠	6.94	
Critical Hdwy Stg 1	•	•	•	•	•	•	6.54	5.54	•	6.54	•		
Critical Hdwy Stg 2	1	1	1	1	1	1	6.54	5.54	1	6.54	1		
Follow-up Hdwy	2.22	•	•	2.22	•	•	3.52	4.02	3.32	3.52	٠	3.32	
Pot Cap-1 Maneuver	717		•	920		•	83	9	204	88	0	534	
Stage 1	•		•	•		•	252	311	•	275	0		
Stage 2	•		٠	1		٠	531	331	1	514	0		
Platoon blocked, %		•	٠		•	٠							
Mov Cap-1 Maneuver	717	1	•	929	1	•	16	26	204	74	•	534	
Mov Cap-2 Maneuver	٠	•	٠	•	•	٠	9/	26	•	74	٠		
Stage 1	1	1	1	1	1	1	249	308	1	272	1	í	
Stage 2	٠	•	٠	٠	•	٠	487	328	٠	448	٠		
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			0.1			204.9			20.1			
HCM LOS							ш			ပ			
Minor Lane/Major Mvmt	Z	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2	3BLn1S	3BLn2			
Capacity (veh/h)		115	717			670			74	534			
HCM Lane V/C Ratio		1.159	0.011	•	•	0.01	•	•	- 0.105 0.073	0.073			
HCM Control Delay (s)		204.9	10.1			10.4			59.3	12.3			
HOIM LAIR LOS		_	۵	•		۵	•	•	_	۵			

	Ì																							
	477			6.94			3.32	534		ì		534												
	٠	٠	٠	٠	٠	٠	٠	0	0	0		٠	•	٠	٠									
Minor2	1472	362	510	7.54	6.54	6.54	3.52	88	275	514		74	74	272	448	SB	20.1	ပ	3BLn2	534	0.073	12.3	В	0.2
2	516	٠	٠	6.94	٠	٠	3.32	204		٠		204	•	٠	٠				WBR SBLn1 SBLn2	74	0.105 0.073	59.3	ш	0.3
	1991	1024	196	6.54	5.54	5.54	4.02	9	311	331		26	26	308	328				WBR S	•	,	٠	•	1
Minor1	1510	1024	486	7.54	6.54	6.54	3.52	83	252	531		9/	76	249	487	NB	204.9	ш	WBT	•	•	٠	•	1
2	0	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	•	٠	٠				WBL	0/9	0.01	10.4	В	0
	0	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	•	٠	٠				EBR	•	•	٠	1	•
Major2	1031	٠	٠	4.14	٠	٠	2.22	0.79		٠		079	•	٠	٠	WB	0.1		EBT	•	•	٠	•	1
2	0	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	•	٠	٠				EBL	717	0.011	10.1	В	0
	0	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	•	٠	٠				NBLn1	115	1.159 0.011	204.9	ш	8.3
Major1	953		٠	4.14	٠		2.22	717		•		711	•		٠	EB	0.1							
Major/Minor M	Conflicting Flow All	Stage 1	Stage 2	Critical Howy	Critical Holwy Stg 1	Critical Howy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Stage 2	Platoon blocked, %	Mov Cap-1 Maneuver	Mov Cap-2 Maneuver	Stage 1	Stage 2	Approach	HCM Control Delay, s	HCM LOS	Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	HCM Control Delay (s)	HCM Lane LOS	HCM 95th %tile Q(veh)

02/11/2019 CivTech BR

Synchro 10 Report Page 9

02/11/2019 CivTech BR

Synchro 10 Report Page 10

. 50 536 . 0.089 0.015 . 83.9 11.8 . F F B . 0.3 0

- 665 - 0.105 - 11 - B - B

NBLn1 EBL 241 719 0.493 0.017 33.7 10.1 D B 2.5 0.1

Minor Lane/Major Mvmt
Capacity (veh/h)
HCM Lane V/C Ratio
HCM Control Delay (s)
HCM Lane LOS
HCM Lane LOS
HCM 95th %tile Q(veh)

WBT

WBL

EBR

EBT

NBLn1

9: Scottsdale Rd & Lincoln Dr Timings Smoke Tree Resort 2020 Background PM

Lane Group EBI EBI EBI MBI MBI NBI NBI SBI)	1	†	^	\ •	↓	•	-	•	-	•	
rations	2000	5	Fal		. Idw	TOW	- [- FOIN	-	- FOS	000	
rations	Lane Group	EBL	EBI	FBK	WBL	WBI	NBL	NBI	SBL	SBI	SBK	
e (vph) 510 56 431 56 62 411 1624 61 1569 e (vph) 510 56 431 56 62 411 1624 61 1569 sses 4 4 5 8 8 5 2 1 6 sses 4 4 5 8 8 5 2 1 6 sses 4 4 5 8 8 5 2 1 6 sses 4 4 5 8 8 5 2 1 6 sses 4 4 5 8 8 5 2 1 6 sses 4 4 5 8 8 5 2 1 6 sses 4 4 5 8 8 5 2 1 6 sses 4 4 5 8 8 5 2 1 6 sses 4 4 5 8 8 5 2 1 6 sses 4 4 5 8 8 5 2 1 6 sses 5 130 130 130 130 130 130 130 150 100 50 100 t(s) 300 300 300 130 130 130 130 160 150 100 t(s) 300 300 300 130 130 130 130 160 100 t(s) 15 15 15 20 20 15 10 10 10 10 10 10 10 10 10 10 10 10 10	Lane Configurations	F	ŧ	¥	J	*	F	4	F	##	¥C	
e (vph) 510 56 431 56 62 411 1624 61 1569 sess 4 4 5 8 8 5 2 1 6 sess 4 4 4 5 8 8 5 2 1 6 see 4 4 4 5 8 8 5 2 1 6 see 4 4 4 5 8 8 5 2 1 6 see 4 4 4 5 8 8 5 2 1 6 see 4 4 4 5 8 8 5 2 1 6 see 4 4 4 5 8 8 5 2 1 6 see 4 4 4 5 8 8 5 2 1 6 see 4 4 4 5 8 8 5 2 1 6 see 4 4 4 5 8 8 5 2 1 6 see 4 4 4 5 8 8 5 2 1 6 see 4 4 4 5 8 8 5 2 1 6 see 1 20 300 300 300 300 130 130 130 130 167 110 160 see 1 23.1% 23.1% 130 130 130 130 167 110 160 see 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Traffic Volume (vph)	510	26	431	26	62	411	1624	61	1569	486	
Split NA pm+ov Split NA Prof N	Future Volume (vph)	510	26	431	26	62	411	1624	61	1569	486	
sses 4 4 5 8 8 5 2 1 6 6 sees 4 4 5 8 8 5 2 1 6 6 sees 4 4 5 8 8 5 2 1 6 6 sees 4 4 4 5 8 8 5 2 1 6 6 sees 4 4 4 5 8 8 5 2 1 6 6 sees 4 4 4 5 8 8 5 2 1 1 6 6 sees 4 4 4 5 8 8 8 5 2 1 1 6 6 sees 4 4 4 5 8 8 8 5 2 1 1 6 6 sees 6 sees 4 4 4 5 8 8 8 5 2 1 1 6 6 sees 6 sees 4 4 4 5 8 8 8 5 2 1 1 6 6 sees 6	Turn Type	Split	Ν	vo+mq	Split	NA	Prot	Ν	Prot	NA	hm+ov	
ses 4 4 4 5 8 8 5 2 1 6 6 al	Protected Phases	4	4	2	∞	∞	2	2	-	9	4	
15 15 15 15 15 15 15 15	Permitted Phases			4							9	
1,000 1,00	Detector Phase	4	4	2	∞	∞	വ	2	-	9	4	
1,0 1,0	Switch Phase											
(k) 130 130 130 130 130 140 150 140 150 130 130 130 130 130 130 130 130 130 13	Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	10.0	2.0	10.0	7.0	
300 300 300 130 130 300 730 140 57.0 5) 231% 231% 231% 100% 100% 231% 56.2% 108% 438% 2) (s) 15 15 15 20 20 115 10 2.0 1.0 Just (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Just (s) 25 55 55 56 56 56 55 57 53 57 Annual (s) 245 445 477 73 71 212 704 79 54.6 Annual (s) 245 245 457 73 71 212 704 79 54.6 Annual (s) 245 245 457 75 73 71 212 704 79 54.6 Annual (s) 245 245 457 75 73 71 212 704 79 54.6 Annual (s) 245 245 457 75 75 75 75 75 85.4 37.6 Annual (s) 245 245 245 45 75 75 75 75 75 85.4 37.6 Annual (s) 245 245 245 25 76 25	Minimum Split (s)	13.0	13.0	13.0	13.0	13.0	13.0	16.7	11.0	16.0	13.0	
331% 231% 231% 100% 100% 231% 56.2% 108% 438% 25 40 4.7 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Total Split (s)	30.0	30.0	30.0	13.0	13.0	30.0	73.0	14.0	57.0	30.0	
S	Total Split (%)	23.1%	23.1%	23.1%	10.0%	10.0%	23.1%	56.2%	10.8%	43.8%	23.1%	
(s) 1.5 1.5 1.5 2.0 2.0 1.5 1.0 2.0 1.0 lost(s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Yellow Time (s)	4.0	4.0	4.0	3.6	3.6	4.0	4.7	3.3	4.7	4.0	
Just (s) 0.0	All-Red Time (s)	1.5	1.5	1.5	2.0	2.0	1.5	1.0	2.0	1.0	1.5	
Initize? None None None None None None None None	Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intige? None None None None None None None None	Total Lost Time (s)	5.5	5.5	5.5	9.9	9.9	5.5	2.7	5.3	5.7	5.5	
Itinize? None None None None None None None C-Max Parl(s) 245 45 73 73 73 73 73 73 75 75 64 75 64 67 67 64 67 67 64 67 67 64 67 67 64 67 67 64 67 67 67 67 67 67 67 67 67 67 67 67 67	Lead/Lag			Lead			Lead	Lag	Lead	Lag		
None None None None None None None None None C-Max None None None None None None C-Max None	Lead-Lag Optimize?											
Ratio 0.99 (245 45.7 73 73 712 704 79 54.6 Ratio 0.19 0.19 0.35 0.06 0.06 0.16 0.54 0.06 0.17 0.04 0.05 0.09 0.99 0.89 0.89 0.06 0.06 0.01 0.06 0.04 0.02 0.09 0.99 0.89 0.89 0.89 0.89 0.89 0.89	Recall Mode	None	None	None	None	None	None	None	None	C-Max	None	
Ratio 0.19 0.19 0.35 0.06 0.06 0.16 0.54 0.06 0.42 0.09 0.99 0.99 0.99 0.98 0.68 0.68 0.64 0.82 0.09 0.09 0.09 0.08 0.68 0.08 0.06 0.00 0.00 0.00 0.00	Act Effct Green (s)	24.5	24.5	45.7	7.3	7.3	21.2	70.4	7.9	54.6	84.8	
1007 1006 330 688 088 088 084 088 088 089 08	Actuated g/C Ratio	0.19	0.19	0.35	90:0	90:0	0.16	0.54	90.0	0.42	0.65	
1001 1006 330 868 379 646 237 854 376 1001 1006 330 868 379 646 237 854 376 1001 1006 330 868 379 646 237 854 376 101 1006 330 88 379 646 237 854 376 101 1006 530 88 379 646 27 854 376 102 F F C F D E C F D C F D E C C F D C C C C C C C C C C C C C C C C	v/c Ratio	0.99	0.99	0.80	0.63	0.58	0.82	0.68	0.64	0.82	0.50	
1001 1006 330 806 807 908 90	Control Delay	100.1	100.6	33.0	8.98	37.9	64.6	23.7	85.4	37.6	11.3	
868 37.9 64.6 23.7 85.4 37.6 F D E C F D C C D C C D C C D C C C D C C C D C C C D C C C D C C C C D C	Oueue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
F D E C F D 52.2 31.8 33.0 C C C C Intersection LOS: D	Total Delay	100.1	100.6	33.0	8.98	37.9	9.49	23.7	85.4	37.6	11.3	
52.2 31.8 D C C Intersection LOS: D	ros	ш	ш	S	ш	۵	ш	ပ	ш	٥	В	
	Approach Delay		71.2			52.2		31.8		33.0		
	Approach LOS		Ш			D		ပ		O		
	Intersection Summary											
	Cycle Length: 130											
	Actuated Cycle Length: 130											
	Offset: 0 (0%). Referenced to	phase 6:	SBT, Sta	rt of Greel	_							
	Natural Cycle: 90											
- %	Control Type: Actuated-Coord	linated										
. 40.3 zation 82.1%	Maximum v/c Ratio: 0.99											
	Intersection Signal Delay: 40.	3			Ξ	ersection	LOS: D					
Analysis Period (min) 15	Intersection Capacity Utilization	on 82.1%			೦	U Level o	f Service	ш				
	Analysis Period (min) 15											

₹ Splits and Phases: 9: Scottsdale Rd & Lincoln Dr ▼ Ø6 (R) \$Ø **₹**

02/11/2019 CivTech BR

Smoke Tree Resort 2020 Background PM

9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

	4	†	/	>	ţ	4	•	•	•	٠	→	•
Movement	EBI	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F	4	ĸ	K	4		K	441		k	***	×
Traffic Volume (veh/h)	510	26	431	26	62	72	411	1624	45	61	1569	486
Future Volume (veh/h)	510	26	431	26	62	72	411	1624	45	19	1569	486
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1:00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	0	0 2	0	0	oN s	0	0	0N 5	0 10 1	0	9 S	0
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Kate, ven/h	119	0	4/9	79	69	08	45/	1804	20	89	1/43	540
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	06:0	0.90	06:0	0.90	06:0	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	671	0	535	101	101	06	515	2537	70	87	2015	924
Arrive On Green	90:0	0.00	90.0	90.0	90.0	90.0	0.15	0.50	0.50	0.05	0.39	0.39
Sat Flow, veh/h	3563	0	1585	1781	1777	1585	3456	5107	141	1781	2106	1585
Grp Volume(v), veh/h	611	0	479	62	69	80	457	1202	652	89	1743	540
Grp Sat Flow(s),veh/h/ln	1781	0	1585	1781	1777	1585	1728	1702	1845	1781	1702	1585
O Serve(g_s), s	22.2	0.0	24.5	4.4	2.0	6.5	16.9	35.7	35.8	4.9	40.8	28.0
Cycle Q Clear(g_c), s	22.2	0.0	24.5	4.4	2.0	6.5	16.9	35.7	35.8	4.9	40.8	28.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.08	1.00		1.00
Lane Grp Cap(c), veh/h	671	0	535	101	101	06	515	1691	916	87	2015	924
V/C Ratio(X)	0.91	0.00	0.00	0.61	89.0	0.89	0.89	0.71	0.71	0.78	0.87	0.58
Avail Cap(c_a), veh/h	671	0	535	101	101	06	651	1762	955	119	2015	924
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	59.9	0.0	46.1	59.9	60.1	60.9	54.2	25.5	25.5	61.2	36.2	17.1
Incr Delay (d2), s/veh	16.2	0.0	17.0	7.6	14.4	57.9	10.3		2.0	13.9	5.3	2.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0:0	0.0	0.0
%ile BackOfQ(50%),veh/ln	12.2	0.0	16.7	2.2	5.6	4.1	8.1	14.5	15.9	5.6	17.7	16.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.97	0.0	63.1	67.5	74.6	118.8	64.5	26.5	27.5	75.1	41.4	19.8
LnGrp LOS	ш	⋖	ш	ш	ш	ш	ш	ပ	ပ	ш		m
Approach Vol, veh/h		0601			71.1			2311			7351	
Approach Delay, sweh		70.4			89.3			34.3			37.4	
Approach LOS		ш			_			د				
Timer - Assigned Phs	_	2		4	2	9		8				
Phs Duration (G+Y+Rc), s	11.6	70.3		30.0	24.9	57.0		13.0				
Change Period (Y+Rc), s	* 5.3	5.7		5.5	5.5	5.7		9.9				
Max Green Setting (Gmax), s	* 8.7	67.3		24.5	24.5	51.3		7.4				
Max Q Clear Time (g_c+I1), s	6.9	37.8		26.5	18.9	42.8		8.5				
Green Ext Time (p_c), s	0.0	2.9		0.0	0.5	2.5		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			44.1									
HCM 6th LOS			۵									

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the larnes for furning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

02/11/2019

Civ/Tech BR

Synchro 10 Report Page 11

Smoke Tree Resort 1: Mockingbird Ln & Lincoln Drive 2020 Total AM

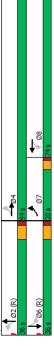
	4	†	>	ţ	•	←	۶	→	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	₩.	je-	₩.	<u>, , , , , , , , , , , , , , , , , , , </u>	æ.	F	æ	
Traffic Volume (vph)	222	981	24	868	2	34	78	88	
Future Volume (vph)	222	981	24	868	2	34	78	88	
Turn Type	pm+pt	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases	-	9		2		4	m	00	
Permitted Phases	9		2		4		∞		
Detector Phase	-	9	2	2	4	4	က	∞	
Switch Phase									
Minimum Initial (s)	3.5	15.0	15.0	15.0	7.0	7.0	3.5	7.0	
Minimum Split (s)	8.0	27.0	27.0	27.0	33.5	33.5	8.0	33.5	
Total Split (s)	27.0	77.0	20.0	20.0	44.0	44.0	0.6	53.0	
Total Split (%)	20.8%	59.2%	38.5%	38.5%	33.8%	33.8%	%6.9	40.8%	
Yellow Time (s)	3.0	4.5	4.5	4.5	4.0	4.0	3.0	4.0	
All-Red Time (s)	1.0	1.5	1.5	1.5	2.5	2.5	1.0	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	0.9	0.9	0.9	6.5	6.5	4.0	6.5	
Lead/Lag	Lead		Lag	Lag	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes		
Recall Mode	None	C-Max	C-Max	C-Max	None	None	None	None	
Act Effct Green (s)	93.3	91.3	70.1	70.1	17.4	17.4	28.7	26.2	
Actuated g/C Ratio	0.72	0.70	0.54	0.54	0.13	0.13	0.22	0.20	
v/c Ratio	0.58	0.45	0.11	0.55	0.08	0.25	0.32	0.84	
Control Delay	13.3	10.2	18.5	25.6	46.2	31.3	42.1	50.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.3	10.2	18.5	25.6	46.2	31.3	42.1	50.2	
TOS	В	В	В	S	۵	S	۵	۵	
Approach Delay		10.7		25.4		32.6		48.6	
Approach LOS		В		O		O		O	
Intersection Summary									
Cycle Length: 130									
Actuated Cycle Length: 130									
Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green	phase 2:	WBTL an	d 6:EBTL	, Start of	Green				
Natural Cycle: 90									
Control Type: Actuated-Coordinated	dinated								
Maximum v/c Ratio: 0.84									
Intersection Signal Delay: 22.3	c,			⊑	Intersection LOS: C	LOS: C			
Intersection Capacity Utilization 74.9%	on 74.9%			2	CU Level of Service D	of Service	_		
Analysis Period (min) 15									

77.8 02/11/2019 CVTech BR

Synchro 10 Report Page 1

Smoke Tree Resort 2020 Total AM

1: Mockingbird Ln & Lincoln Drive HCM 6th Signalized Intersection Summary


	1	†	/	>	 	✓	√	←	•	•	-	\
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F	*		K	*		r	2,		K	2,	
Traffic Volume (veh/h)	222	981	30	24	868	44	2	34	24	78	88	233
Future Volume (veh/h)	222	981	30	24	868	44	2	34	24	78	88	233
Initial O (Ob), veh	0 9	0	0 9	0 9	0	0 9	0 9	0	0 9	0 9	0	0 ;
Ped-Bike Adj(A_pb1) Parking Bus Adi	00.1	100	00.1	1.00	100	00.1	00.1	100	90.1	8.6	00	90.1
Work Zone On Approach	2	8 8	20.	2	N ON	8	8	N ON	0.1	3	8 ON	2
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	247	1090	33	27	866	49	9	38	27	87	86	259
Peak Hour Factor	06:0	06:0	0.00	06:0	0.00	06:0	06:0	06:0	06:0	06:0	06:0	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	394	2335	11	312	1915	94	88	175	124	310	109	289
Arrive On Green	0.08	99.0	99.0	0.56	0.56	0.56	0.17	0.17	0.17	0.04	0.24	0.24
Sat Flow, veh/h	1781	3521	107	205	3447	169	1024	1017	723	1781	454	1200
Grp Volume(v), veh/h	247	220	573	27	514	533	9	0	92	87	0	357
Grp Sat Flow(s),veh/h/ln	1781	1777	1851	205	1777	1840	1024	0	1740	1781	0	1654
O Serve(g_s), s	7.4	19.6	19.6	3.6	23.5	23.5	0.7	0.0	4.2	2.0	0.0	27.2
Cycle Q Clear(g_c), s	7.4	19.6	19.6	9.3	23.5	23.5	18.9	0.0	4.2	2.0	0.0	27.2
Prop In Lane	1.00		90:0	1.00		0.09	1.00		0.42	1.00		0.73
Lane Grp Cap(c), veh/h	394	1178	1227	312	787	1022	88	0	299	310	0	398
V/C Ratio(X)	0.63	0.47	0.47	0.09	0.52	0.52	0.07	0.00	0.22	0.28	0.00	0.0
Avail Cap(c_a), veh/h	572	1178	1227	312	786	1022	208	0	205	310	0	592
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.55	0.55	0.55	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	14.0	10.7	10.7	16.4	18.1	18.1	61.3	0:0	46.3	41.3	0:0	47.8
Incr Delay (d2), s/veh	1.6	1.3	1.3	0.3		1.0	0.3	0.0	0.4	0.5	0.0	11.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.0	7.8	8.2	0.4	8.6	10.2	0.2	0.0	1.9	2.3	0.0	12.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	15.7	12.0	12.0	16.7	19.2	19.1	61.6	0:0	46.7	41.8	0.0	59.5
LnGrp LOS	Я	В	m	В	В	В	ш	⋖	۵	۵	¥	ال
Approach Vol, veh/h		1370			1074			71			444	
Approach Delay, sweh		12.7			19.1			48.0			26.0	
Approach LOS		В			В			Ω			ш	
Timer - Assigned Phs	_	2	3	4		9		∞				
Phs Duration (G+Y+Rc), s	14.0	78.2	9.0	28.8		92.2		37.8				
Change Period (Y+Rc), s	4.0	0.9	4.0	6.5		0.9		6.5				
Max Green Setting (Gmax), s	23.0	44.0	2.0	37.5		71.0		46.5				
Max Q Clear Time (g_c+I1), s	9.4	25.5	7.0	20.9		21.6		29.2				
Green Ext Time (p_c), s	9.0	7.1	0.0	0.2		6.6		2.2				
Intersection Summary												
HCM 6th Ctrl Delay			22.3									
HCM 6th LOS			O									

02/11/2019 CivTech BR

Smoke Tree Resort 2: Quail Run Rd & Lincoln Drive 2020 Total AM

EEL EBT	WBL	₩	✓ NBL	→	♪ SBL	→
4	*	₩.		4	F	æ,
	2	863	_	0	56	0
	2	863	_	0	56	0
pm+pt NA	Perm	NA	Perm	NA	Perm	NA
7 4		∞		2		9
4	∞		2		9	
7 4	∞	∞	2	2	9	9
	15.0	15.0	7.0	7.0	7.0	7.0
	28.0	28.0	33.0	33.0	33.0	33.0
	74.0	74.0	36.0	36.0	36.0	36.0
	26.9%	26.9%	27.7%	27.7%	27.7%	27.7%
	4.0	4.0	4.5	4.5	4.5	4.5
	2.5	2.5	1.5	1.5	1.5	1.5
	0.0	0.0		0.0	0.0	0.0
	6.5	6.5		0.9	0.9	0.9
Lead	Lag	Lag				
	Yes	Yes				
_	None	None	С-Мах	С-Мах	C-Max	С-Мах
	46.6	46.6		22.7	22.7	22.7
	0.36	0.36		0.43	0.43	0.43
	0.05	0.77		0.01	0.02	0.09
	26.0	43.2		0.0	26.3	0.2
	0.0	0.0		0.0	0.0	0.0
	26.0	43.2		0.0	26.3	0.2
٥	S	٥		A	O	A
35.3		43.1				7.7
D		Ω				A
2:NBTL an	d 6:SBTL	Start of	Green			
Control Type: Actuated-Coordinated						
		드	tersection	LOS: D		
ntersection Capacity Utilization 64.4%		$_{\odot}$:U Level	of Service	S	
	EBL EBT 115 1030 115 1030 115 1030 115 1030 115 1030 115 1030 115 1030 115 1030 115 115 1030 115	L EBIT WBL 1 1030 2 1030 2	L EBI WBL WBT 1030 2 863 1030 2 863 1030 2 863 1030 2 863 1030 2 86 1030 2 80 1030 2 80 1030 2 80 1030 2 80 1030 2 80 1040 740 740 1050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EBT WBL WBT 1030 2 863 1030 2 863 1040 140 140 1050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L EBT WBL WBT NBL NBT	T NBT 3

Splits and Phases: 2: Quail Run Rd & Lincoln Drive

02/11/2019 Synchro 10 Report CivTech BR Page 3

Smoke Tree Resort 2020 Total AM

2: Quail Run Rd & Lincoln Drive HCM 6th Signalized Intersection Summary

			•					•				
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	*		r	*			4		K	2,	
Traffic Volume (veh/h)	115	1030	4	2	863	12		0	7	26	0	92
Future Volume (veh/h)	115	1030	4	2	863	12	-	0	7	26	0	9
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		N _o			9			9			9	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	128	1144	4	2	959	13	-	0	∞	29	0	72
Peak Hour Factor	0.90	0.00	0.00	06:0	06:0	0.00	06:0	06:0	0.00	06:0	06:0	0.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	210	1506	2	187	1152	16	94	22	681	745	0	775
Arrive On Green	0.13	0.83	0.83	0.32	0.32	0.32	0.49	0.00	0.49	0.49	0.00	0.49
Sat Flow, veh/h	1781	3632	13	490	3590	49	130	44	1393	1407	0	1585
Grp Volume(v), veh/h	128	260	288	2	475	497	6	0	0	29	0	72
Grp Sat Flow(s),veh/h/ln	1781	1777	1868	490	1777	1862	1567	0	0	1407	0	1585
Q Serve(g_s), s	6.1	18.9	18.9	0.4	32.2	32.2	0.0	0.0	0.0	6.0	0.0	3.2
Cycle Q Clear(g_c), s	6.1	18.9	18.9	7.1	32.2	32.2	0.4	0.0	0.0	1.3	0.0	3.2
Prop In Lane	1.00		0.01	1.00		0.03	0.11		0.89	1:00		1.00
Lane Grp Cap(c), veh/h	210	737	775	187	220	265	797	0	0	745	0	775
V/C Ratio(X)	0.61	0.76	0.76	0.01	0.83	0.83	0.01	0.00	0.00	0.04	0.00	0.09
Avail Cap(c_a), veh/h	317	1196	1257	285	923	196	797	0	0	745	0	775
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1:00	1.00	1.00
Upstream Filter(I)	0.90	0.90	06.0	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	28.9			34.8	40.9	40.9	17.1	0.0	0.0	17.3	0.0	17.8
Incr Delay (d2), s/veh	5.6	1.5	1.4	0.0	3.6	3.4	0.0	0.0	0.0	0.1	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0:0	0:0	0.0	0:0	0.0
%ile BackOfQ(50%),veh/lin	2.5	3.6	3.7	0.0	14.6	15.2	0.1	0.0	0.0	0.5	0.0	1.2
Unsig. Movement Delay, s/veh			L C		:		1	c	9		c	9
LnGrp Delay(d),s/veh	31.4	9.6	9.5	34.9	44.5	44.3	17.1	0.0	0.0	17.4	0.0	18.0
LnGrp LOS	ن	⋖	A	ی	۵	۵	В	¥	A	Я	A	B
Approach Vol, veh/h		1276			974			6			101	
Approach Delay, s/veh		11.7			44.4			17.1			17.8	
Approach LOS		В			Ω			В			B	
Timer - Assigned Phs		2		4		9	7	∞				
Phs Duration (G+Y+Rc), s		9.69		60.4		9.69	12.2	48.2				
Change Period (Y+Rc), s		0.9		6.5		0.9	4.0	6.5				
Max Green Setting (Gmax), s		30.0		87.5		30.0	16.0	67.5				
Max Q Clear Time (g_c+I1), s		2.4		20.9		5.2	8.1	34.2				
Green Ext Time (p_c), s		0.0		10.5		0.4	0.2	7.5				
Intersection Summary												
HCM 6th Ctrl Delay			3 30									

02/11/2019 CivTech BR

Smoke Tree Resort 2020 Total AM

2020 Total AM							HCM 6th TWSC
Intersection							
Int Delay, s/veh	0.5						
Movement	EBT	EBR WBL WBT	WBL		NBL	NBR	
Lane Configurations	₹		*	‡	>		
Traffic Vol, veh/h	1049	17	26	860	15	22	
Future Vol, veh/h	1049	17	26	860	12	22	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free Free Free	Free	Free	Stop	Stop	
RT Channelized	1	- None	•	None	•	None	
Storage Length			25		0		
Veh in Median Storage, #	0 #	•	•	0	0		
Grade, %	0			0	0		
Peak Hour Factor	06	8	06	06	06	06	
Heavy Vehicles, %	2	2	2	2	2	2	
Mymt Flow	1166	10	20	056	17	24	

	593			6.94			3.32	449				449							WBT					
Minor1	1712	1176	536	6.84	5.84	5.84	3.52	81	255	221		77	180	242	221	NB	20.1	ပ		282	- 0.049	11.5	В	0.2
2	0	٠	٠	٠		٠	٠	٠	٠	٠	٠	1	٠	٠					EBR WBL			٠	٠	1
Major2	1185	٠	٠	4.14		٠	2.22	282	٠	٠		585	٠	٠		WB	0.3		EBT		٠	٠	٠	1
	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•	٠				NBLn1	280	0.147	20.1	O	0.5
Major1	0				ľ											EB	0		=					
Major/Minor	Conflicting Flow All	Stage 1	Stage 2	Critical Hdwy	Critical Hdwy Stg 1	Critical Hdwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Stage 2	Platoon blocked, %	Mov Cap-1 Maneuver	Mov Cap-2 Maneuver	Stage 1	Stage 2	Approach	HCM Control Delay, s	HCM LOS	Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	HCM Control Delay (s)	HCM Lane LOS	HCM 95th %tile Q(veh)

Synchro 10 Report Page 5 02/11/2019 CivTech BR

Smoke Tree Resort 2020 Total AM

5: Lincoln Medical West & Lincoln Dr HCM 6th TWSC

Int Delay, s/veh	0.4						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	₽		-	‡	>		
Traffic Vol, veh/h	1054	17	42	879	9	6	
Future Vol, veh/h	1054	17	42	879	9	6	
Conflicting Peds, #/hr	0	0	0	0		0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	٠	None		None		None	
Storage Length			22	٠	0		
Veh in Median Storage, #	0 #			0	0		
Grade, %	0			0	0		
Peak Hour Factor	8	06	8	06	8	06	
Heavy Vehicles, %	7	2	2	2	2	2	
	1171	19	47	776	7	10	
Major/Minor Ma	Major1	2	Major2	2	Minor1		
Conflicting Flow All	0	0	1190	0	1764	595	
Stage 1				•	1181		
Stage 2					583		
Critical Hdwy			4.14	•	6.84	6.94	
Critical Hdwy Stg 1				'	5.84		
Critical Hdwy Stg 2		•		1	5.84		
Follow-up Hdwy	•	•	2.22	٠	3.52	3.32	
Pot Cap-1 Maneuver			582	•	75	447	
Stage 1	•	•	•	•	254		
Stage 2				•	521		
Platoon blocked, %	•	•		٠			
Mov Cap-1 Maneuver	•	1	582	•	69	447	
Mov Cap-2 Maneuver	٠	•	•	٠	170		
Stage 1	•	•	1	•	233		
Stage 2	1	1	1	1	521		
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.5		19.2		
HCM LOS					U		
Minor Lane/Major Mvmt	2	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		271		٠	582		
HCM Lane V/C Ratio		0.062	ľ	ľ	0.08		
HCM Control Delay (s)		19.2			11.7		
HCM I and I OS		ر			۵		
		-			_		

Synchro 10 Report Page 6 02/11/2019 CivTech BR

Smoke Tree Resort 6: Lincoln Medical East & Lincoln Dr 2020 Total AM

Intersection Inte								
Name	Intersection							
FERT FERR WIGH MIST NIBLI 1050 11 5 921 0 0 0 0 0 0 0 0 0	Int Delay, s/veh	0.1						
A	Movement	EBT	EBR	WBL	WBT	NBL	NBR	
1050	Lane Configurations	₹			‡		¥C	
1050	Traffic Vol, veh/h	1050	=	2	921	0	6	
Free Free Free Sup None	Future Vol, veh/h	1050	7	2	921	0	6	
Free Free Free Stop None	Conflicting Peds, #/hr	0	0	0	0	0	0	
# 0	Sign Control	Free	Free	Free	Free	Stop	Stop	
# 0	RT Channelized	•	None	1	None		None	
# 0	Storage Length				٠		0	
0	Veh in Median Storage,	#		•	0	0	٠	
Major1 Major2 Minor1	Grade, %				0	0	ľ	
Najor1	Peak Hour Factor	06	8	06	8	06	8	
1167 12 6 1023 0	Heavy Vehicles, %	2	2	2	2	2	2	
ejor1 Major2 Minor1 0 0 1179 0	Mvmt Flow	1167	12	9	1023	0	10	
Minor Major Minor								
0 0 1179 0 0 1 1 1 1 1 2 2 2 2 2		/lajor1	_	/ajor2	2	linor1		
## A 1.4	Conflicting Flow All	0	0	1179	0	1	200	
EB WB NB NB NB 0022 - 0009 11.2 SB8 - 0 0 0 1 13.2 SB	Stage 1	•	1	1	•	1	1	
EB WB WBL NBLN 451 13.2	Stage 2	•	•	•	٠	•	•	
EB WB NB NBLNI EBT EBR WBI 451 - 588 0022 - 0009 132 - 112 132 - 112 0 0.1 - 0009	Critical Hdwy	•	•	4.14	٠	1	6.94	
EB WB NB	Critical Hdwy Stg 1	•	•		•	•	•	
EB WB NB NBLN1 EBT EBR WBL 451 - 588 0.022 - 0.009 132 - 112 B 0.112 - 0.009	Critical Hdwy Stg 2	•	1		•	1		
EB NBLM EBT EBR WBL WB 451 C 0002	Follow-up Hdwy	٠	•	2.22	٠	•	3.32	
EB NB	Pot Cap-1 Maneuver	1	1	288	1	0	451	
EB WB NB WB NB O 0.1 13.2 NBLNI EBT EBR WBL WB 451 - 588	Stage 1	1	1	•	•	0	•	
EB WB NB	Stage 2	•	•		٠	0		
EB NB	Platoon blocked, %	٠	1		٠			
EB WB NB NB O	Mov Cap-1 Maneuver	•	1	288	•	1	451	
EB WB NB	Mov Cap-2 Maneuver	٠	•		٠	•		
EB WB NB	Stage 1	•	•	•	•	1	•	
NBLn1 EBR WBL WB WB WB WB WB WB WB	Stage 2	•	1	•	1	1	1	
NB								
0 0.1 13.2 B B NBLn1 EBT EBR WBL WB 451 588 0.022 0.009 13.2 11.2 B B B B 0.1 0	Approach	EB		WB		NB		
MBLn1 EBT EBR WBL WB 451 - 588 0.022 - 0.009 13.2 - 11.2 B B B B 0.1 - 0	HCM Control Delay, s	0		0.1		13.2		
MBLn1 EBT ERR WBL WB 451 - 588 0.022 - 0.009 13.2 - 11.2 B B B 0.1 - 0	HCM LOS					Ф		
451 588 0022 0.009 13.2 11.2 B B 0.1 0	Minor Lane/Major Mvmt		Bl n1	FBT	FBR	WBI	WBT	
0.022	Consoits (sobjet)		451	2	Ĭ	100	2	
13.2 - 11.2 B - B	Capacity (venin)		451			288		
13.2 - 11.2 B - B 0.1 - 0	HCIM Lane V/C Ratio		0.022	1		0.003	۱	
O(veh) 0.1 - B	HCM Control Delay (s)		13.2	•	1	711.7		
0.1	HCM Lane LOS		2	1	١	Ω.	١	
	HCM 95th %tile Q(veh)		0.1	1	1	0	1	

02/11/2019 Synchro 10 Report CivTech BR Page 7

02/11/2019 CivTech BR

Synchro 10 Report Page 8

Notes

-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined ∵ All major volume in platoon

Smoke Tree Resort 2020 Total AM

7: Apartment Drwy & Lincoln Dr HCM 6th TWSC

Majorial continuity													
Name			EBT	EBR	WBL		WBR	NBL	NBT	NBR	SBL	SBT	SBR
National Color Nati		r	4		r	₹			4		-		¥L.
Free Free Free Free Free Stop Stop Stop Stop Stop Stop Stop Stop		27	666	32	19	861	10	52	0	30	2	0	12
Free Free Free Free Stop Stop Stop Stop Stop Stop Stop Stop		27	666	33	19	861	9	25	0	30	വ	0	12
Free Free Free Free Free Shp		0	0	0	0	0	0	0	0	0	0	0	0
10 10 10 10 10 10 10 10	≒±				Free		Free	Stop	Stop	Stop	Stop	Stop	Stop
age, # - 0 - 0 0 - 0 0 - 0 0 0 0 0 0 0 0 - 0 0 0 - 0	14:	i	7	None	1	7	None	1	1	None	1	1	None
age, # . 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Veh in Median Storage, #	22	٠	٠	25	٠	٠	٠	٠		0		0
National Color Nati			0	٠	٠	0	٠	٠	0		•	0	
Majort	Grade, %		0	٠	٠	0	٠	٠	0		•	0	
Majort	Peak Hour Factor	06	06	8	06	8	8	06	8	06	8	06	06
Majort	Heavy Vehicles, %		2	2 5	2 5	2	7 2	2	7	2	7	7	7 5
Majort	WINTER FLOW		2	60	7	104	=	00	>	S	0		2
968 0 0 1149 0 0 1711 2200 575 1620 - 46 1190 1190 - 1105 - 105 1190 1190 - 1105 - 105 1190 1190 - 1105 - 105 1190 1190 - 1105 - 105 1190 1190 - 1105 - 105 1190 1190 - 105 654 554 - 654 - 654 - 654 654 554 - 654 - 654 654 554 - 654 - 654 654 554 - 654 - 654 654 12 33 3 35 2 35 199 259 - 259 0 191 246 - 59 - 62		or1		≥	ajor2		2	inor1		_	Minor2		
4.14 1190 1190 1005		896	0		1149	0	0	1711	2200	575	1620	١.	484
4.14	Stage 1		٠	٠	٠	٠	٠	1190	1190		1005		
4.14 4.14 7.54 6.54 6.94 7.54 . 6.9 2.22 2.22 6.54 6.54 6.54 6.54 6.54 2.22 2.22 6.54 5.54 6.54 6.54 7.07 6.04 59 44 461 68 0 52 7.07 6.04 50 34 461 68 0 52 7.07 6.04 507 31 445 0 7.07 6.04 6.4 4 461 68 0 52 7.07 6.04 6.4 4 461 68 0 62 7.07 6.04	Stage 2		•	٠	٠	٠	٠	521	1010		615		
2.22		14	÷	٠	4.14	٠	٠	7.54	6.54	6.94	7.54	1	6.94
2.22 654 5.54 654 654 7.7	Critical Hdwy Stg 1		٠		٠		٠	6.54	5.54		6.54		
2.22 2.22 352 4.02 3.32 3.52 3.37 707 604 507 316 259 0 0 570 604 607 316 445 0 0 670 607 316 445 0 0 670	Critical Hdwy Stg 2		٠	٠	٠	٠	٠	6.54	5.54		6.54		
707 604 59 44 461 68 0 52 199 259 259 0		.22	•		2.22		•	3.52	4.02	3.32	3.52	•	3.32
19		707	1	1	604	1	1	26	44	461	89	0	529
707 507 316	Stage 1				•		•	199	259	•	259	0	
707 60454 41 461 59 52	Stage 2		٠	٠	٠	٠	٠	202	316		445	0	
707 60454 41 461 59 52 54 41 59 52 191 248 248 248 477 305 395 477 305 395			٠	٠		٠	٠						
Color Colo		707	1	•	604	•	•	~ 54	41	461	26	1	529
Fig. 10 Fig. 10 Fig. 10 Fig. 10	Mov Cap-2 Maneuver		٠	٠	٠	٠	٠	~ 54	41	•	26	•	
EB	Stage 1	÷	٠	•	٠	•	٠	191	248	•	248	•	
Color	Stage 2		•	•	•	•	•	477	305	1	395	1	
0.3 0.2 236.3 F F F NBL NBL WBL WBL SBLn1 80 707 - 604 - 59 17.139 0.042 - 0.035 - 0.094 236.3 10.3 - 11.2 - 7.5 F F B - F F B - F F S		EB			WB			8			SB		ı
NBLn1 EBL EBT EBR WBL WBT WBRSBLn1 80 707 - 604 - 59 1.139 0.042 - 0.035 - 0.094 2.36.3 10.3 - 11.2 - 7.18 - 7.2		0.3			0.2			236.3			29.7		
NBLn1 EBL EBT EBR WBL WBT WBRSBLn1 80 707 · 604 · 59 17139 0.042 · 0.035 · 0.094 236.3 10.3 · 11.2 · 7.5 F B · F B · F S	HCM LOS							ш			Ω		
1.139 0.042 - 0.035 - 0.094 2.36.31 - 0.035 - 0.0035 - 0.094 F B - B - F S	Minor Lang/Major Mumt	Ž	1 n	ā	FDT	QQJ	Id/M	TGW	N/BD 0	D Lu Id	Cald		
80 /0/ 004 37 1.139 0.042 0.035 0.094) 236.3 10.3 11.2 72.3 F B B F	MILLOI Laireriviajoi iviviiit		200	707	רחו	LDN	WDL VOA	- A	MOM	, DEIII,	SULLIZ		
(1.137 0.042 - 0.033 - 0.034 (1.137 0.042 - 0.034 (1.137 0.034 -	Capacity (vervn)	7	120	/0/			604 02E			29	676		
lay(s) 236.3 l0.3 - 11.2 - 12.3 F B - E	HCM Larie V/C Rallo	_ <	. 139	7.042	٠		0.035	١		0.094	0.020		
	HCM Control Delay (s)	7	36.3	10.3			711.2			72.3	7 2		
	HCM Lane LOS		_	2	1	٠	Я	1	•	_	Ω		

Smoke Tree Resort 2020 Total AM

Intersection													
Int Delay, s/veh	-												
Movement	EBL	EBT	EBR WBL		WBT WBR		NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	r	₹		<u>r</u>	₹			4		K-		W.	
Traffic Vol, veh/h	က	8/6	22	44	873	00	9	0	42	4	-	12	
Future Vol, veh/h	m	978	22	44	873	∞	9	0	42	4	-	12	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop Stop		Stop	Stop	Stop	
RT Channelized			None	•	٠	None		•	None			None	
Storage Length	25		٠	22	٠	٠	٠	٠	٠	0	٠	0	
Veh in Median Storage, #	*	0	1	,	0	•		0	•		0		
Grade, %		0	٠	٠	0	٠	٠	0	٠	•	0		
Peak Hour Factor	06	8	06	06	06	06	06	06	06	06	06	06	
Heavy Vehicles, %	7	2	2	2	2	2	2	2	2	7	2	2	
Mvmt Flow	c	1087	61	49	026	6	7	0	47	4	-	13	

	490			6.94			3.32	524				524												
	2227	1073	1154	6.54	5.54	5.54	4.02	43	295	270		39	36	271	269									
Minor2	1623	1073	550	7.54	6.54	6.54	3.52	89	235	487		27	22	234	436	SB	27.4	۵	BLn2	524	0.025	12.1	В	0.1
2	574		•	6.94	٠	٠	3.32	462	٠	٠		462	•	٠	•				BLn1S	22	- 0.078 0.025	73.4	ш.	0.2
	2201	1124	1077	6.54	5.54	5.54	4.02	44	279	293		40	40	278	269				WBR SBLn1 SBLn2	•	-	1	•	٠
Minor1	0 1708	1124	584	7.54	6.54	6.54	3.52	26	219	465		53	53	218	415	NB	24.8	U	WBT		•	1	•	•
2	0	•	•	1	٠	•	•	•	٠	٠	•	1	•	•	•				WBL	604	- 0.081	11.5	В	0.3
	0	•	•	1	٠	•	•	•	٠	٠	•	1	•	•	•				EBR	•		1	٠	•
Major2	0 1148		•	4.14	٠	٠	2.22	604	٠	٠		604	•	٠	•	WB	0.5		EBT	•		1	٠	•
2	0	•	•	1	٠	٠	•	٠	٠	٠	•	1	•	٠	•				EBL	701	0.005	10.2	В	0
	0		•	1	٠	٠	•	٠	٠	٠	•	1	•	٠	•				NBLn1	235	0.227 0.005	24.8	ပ	0.8
Major1	616		•	4.14	٠	٠	2.22	701	٠	٠		701	•	٠	•	FB	0		Z					
Major/Minor N	Conflicting Flow All	Stage 1	Stage 2	Critical Hdwy	Critical Holwy Stg 1	Critical Holwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Stage 2	Platoon blocked, %	Mov Cap-1 Maneuver	Mov Cap-2 Maneuver	Stage 1	Stage 2	Approach	HCM Control Delay, s	HCM LOS	Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	HCM Control Delay (s)	HCM Lane LOS	HCM 95th %tile Q(veh)

02/11/2019 Synchro 10 Report CivTech BR Page 9

Smoke Tree Resort 2020 Total AM

8: AJ's Drwy & Lincoln Dr HCM 6th TWSC

9: Scottsdale Rd & Lincoln Dr

	SBR	R _	615	615	۸۵	4	9	4		7.0	13.0	01	%	4.0	1.5	0.0	5.5			ЭL	8.98	57	51	11.6	0.0	11.6	В												
*		L			vo+md v			_					33.1%					_		None		19.0					_												
→	SBT	₩	1669	1669	NA	9		9		10.0	16.0	57.0	43.8%	4.7	1.0	0.0	5.7	Lag		C-Max	57.4	0.44	0.83	36.8	0.0	36.8		31.1	O										
۶	SBL	*	51	21	Prot	-		-		2.0	11.0	14.0	10.8%	3.3	2.0	0.0	5.3	Lead		None	7.6	90:0	0.55	79.0	0.0	79.0	ш												
—	NBT	4413	1316	1316	¥	2		2		10.0	16.7	73.0	56.2%	4.7	1.0	0.0	2.7	Lag		None	71.3	0.55	0.54	20.5	0.0	20.5	O	27.5	S									۵	
•	NBL	F	307	307	Prot	2		2		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5	Lead		None	19.3	0.15	19:0	58.4	0.0	58.4	ш										LOS: D	ICU Level of Service D	
ţ	WBT	₩\$	36	36	¥	80		∞		7.0	13.0	13.0	10.0%	3.6	2.0	0.0	9.9			None	7.2	90.0	0.40	33.9	0.0	33.9	O	45.7	O								ntersection LOS: D	U Level o	
>	WBL	<i>y</i> -	37	37	Split	∞		∞		7.0	13.0	13.0	10.0%	3.6	2.0	0.0	9.9			None	7.2	90:0	0.42	72.5	0.0	72.5	ш						_				교	೨	
<u>/-</u>	EBR	¥C.	469	469	vo+mq	2	4	2		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5	Lead		None	43.1	0.33	0.91	39.4	0.0	39.4	۵						t of Greer						
†	EBT	÷	38	38	NA	4		4		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5			None	23.8	0.18	06:0	92.7	0.0	92.7	ш	0.79	ш				SBT, Star						
1	EBL	*	461	461	Split	4		4		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5			None	23.8	0.18	06:0	93.2	0.0	93.2	ш						to phase 6:		ordinated		7.1	ition 81.1%	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Oueue Delay	Total Delay	SOT	Approach Delay	Approach LOS	Intersection Summary	Cycle Lenath: 130	Actuated Cycle Length: 130	Offset: 0 (0%), Referenced to phase 6:SBT, Start of Green	Natural Cycle: 90	Control Type: Actuated-Coordinated	Maximum v/c Ratio: 0.91	Intersection Signal Delay: 37.1	Intersection Capacity Utilization 81.1%	Analysis Period (min) 15

Splits and Phases: 9: Scottsdale Rd & Lincoln Dr

↓

₹

Smoke Tree Resort 2020 Total AM

9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

2 924 0.39 11585 683 683 11585 1100 924 924 924 11.00 11.00 11.00 11.00 11.00 24.0 1870 683 0.90 1.00 0.92 2015 1.00 1.00 37.4 8.4 0.0 1.00 No 1870 2015 0.39 0.39 11854 1702 44.9 2594 40.8 D 1669 1669 51 001.00 57 2 2 73 73 781 4.1 4.1 1.00 73 9.07 781 1.100 1.10 68.2 39 39 30 00 00 26.1 1.00 No 1870 1462 0.90 C C 1846 32.1 2401 0.47 0.47 5098 976 976 27.7 27.7 0.61 1762 1.00 1.00 25.5 25.5 0.3 0.0 12.5 5.6 7.4 6.3 0.0 307 307 307 1.00 1.00 59.4 84 84 0 0. 1870 53 0.90 57.0 5.7 51.3 46.9 1.9 68.4 98 80 8.8 1870 40 0.90 2 95 0.05 40 7771 2.8 2.8 95 0.42 1.00 1.00 59.6 1.1 0.0 2.09 134 20.6 5.5 24.5 14.6 0.5 8.09 1870 41 2 2 95 95 0.05 41 2.9 2.9 2.9 11.00 95 0.43 11.00 11.00 11.00 11.10 0.00 0.00 30.0 5.5 24.5 26.5 0.0 37 0 0 1.00 46.4 D 469 469 0 1.00 1.00 1870 521 0.90 0.00 0.0 1.00 No 1870 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 A 1063 82.8 66.9 5.7 67.3 29.7 2.2 t 1870 542 0.90 461 0 1.00 1.00 57.2 Max Green Setting (Gmax), s *8.7 Max Q Clear Time (g_c+I1), s 6.1 Green Ext Time (p_c), s 0.0 Ind Delay (d2), siveh Initial Q Delay(d3),siveh %ile BackOfQ(50%),veh/in Unsig. Movement Delay, siveh LnGrp Delay(d),siveh 5 Timer - Assigned Phs Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Grp Volume(v), veh/h Grp Sat Flow(s), veh/h/ln Q Serve(g_s), s Cycle Q Clear(g_c), s Prop in Lane Lane Grp Cap(c), veh/h V/C Ratio(X) Avail Cap(c_a), veh/h HCM Platoon Ratio Adj Sat Flow, vehrhin Adj Flow Rate, vehrh Peak Hour Factor Percent Heavy Veh, % Cap, vehrh Arrive On Green Sat Flow, vehrh Upstream Filter(I) Uniform Delay (d), s/veh LnGrp LOS Approach Vol, veh/h Approach Delay, s/veh Approach LOS Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h) ntersection Summary HCM 6th Ctrl Delay HCM 6th LOS

User approved pedestrian interval to be less than phase max green. User approved volume balancing among the lanes for furning movement.

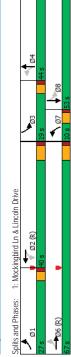
02/11/2019 CivTech BR

Synchro 10 Report Page 11

Smoke Tree Resort 2020 Total AM

10: Quail Run Rd & Access A HCM 6th TWSC

Intersection Intersection Intersection Movement Intersection Intersect
--


Synchro 10 Report Page 12 02/11/2019 CivTech BR

HCM 6th computational engine requires equal clearance times for the phases crossing the barrier

Smoke Tree Resort 2020 Total AM Mitigated

1: Mockingbird Ln & Lincoln Drive Timings

		٤	.88	88	NA	80		8		0:	.5	0:	%	4.0	2.5	0:	6.5	10	SS	91	2	0.	24	.3	0.	.3	D	0.	D									
→	SBL SB1		78 8		_		œ	m		3.5 7.			4.6% 40.8%				4.0 6.			_	30.7 26.2				0.0 0.0	38.7 50.3	_	48.0										
←	NBT	£\$	34		NA p	4		4		7.0	33.5		33.8% 1	4.0	2.5	0.0	6.5	Lag			14.2	0.11	0.30	34.2	0.0	34.2	ပ	34.0	ပ								Intersection LOS: C	3
•	NBL	*	2	2	pm+pt	7	4	7		2.0	9.5	10.0	7.7%	3.5	1.0	0.0	4.5	Lead	Yes	None	19.9	0.15	0.02	32.0	0.0	32.0	ပ						i Green				Intersection LOS: C	2
ţ	WBT	₩.	868	868	NA	2		2		15.0	27.0	40.0	30.8%	4.5	1.5	0.0	0.9	Lag	Yes	C-Max	1.89	0.53	0.56	19.1	0.0	19.1	В	19.0	В				L, Start ol				_ =	
>	WBL	*	24	24	Perm		2	2		15.0	27.0	40.0	30.8%	4.5	1.5	0.0	0.9	Lag	Yes	C-Max	68.7	0.53	0.11	15.2	0.0	15.2	В						nd 6:EBTI					
†	EBT	₩	981	981	NA	9		9		15.0	27.0	67.0	51.5%	4.5	1.5	0.0	0.9			C-Max	89.3	69.0	0.46	11.8	0.0	11.8	В	12.7	В				WBTL ar					
1	EBL	*	222	222	pm+pt	_	9	-		3.5	8.0	27.0	20.8%	3.0	1.0	0.0	4.0	Lead	Yes	None	91.3	0.70	19.0	16.5	0.0	16.5	В					130	ed to phase 2:	-	coordinated		r. 20.8 Ization 74 9%	Editor / T ro
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Oueue Delay	Total Delay	TOS	Approach Delay	Approach LOS	Intersection Summary	Cycle Lenath: 130	Actuated Cycle Length: 130	Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green	Natural Cycle: 90	Control Lype: Actuated-Coordinated	Maximum v/c Ratio: 0.84	Intersection Signal Delay: 20.8 Intersection Capacity Hilization 74 9%	Analysis Period (min) 15

02/12/2019 CivTech BR

Smoke Tree Resort 2020 Total AM Mitigated

1: Mockingbird Ln & Lincoln Drive HCM 6th Signalized Intersection Summary

Movement EB	Movement Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h)			۰				_	-				
100 100	Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h)	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
222 981 30 24 898 44 5 34 24 78 88 82 22 981 30 24 898 44 5 34 24 78 88 88 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Traffic Volume (veh/h) Future Volume (veh/h)	F	₩		r	₩		r	2,		K	2,	
222 981 30 24 898 44 5 34 24 78 88 100 100 100 100 100 100 100 100 100 10	Future Volume (veh/h)	222	981	30	24	868	44	2	34	24	78	88	233
1.00		222	981	30	24	868	44	2	34	24	78	88	233
1,00	Initial O (Ob), veh	0 9	0	0 ;	0 9	0	0 9	0 9	0	0 9	0 9	0	0 ;
100 100	Ped-Bike Adj(A_pbT)	1.00	6	1.00	1.00	6	1.00	1.00		1.00	1.00	5	1.00
1870 1870	Parking Bus, Adj	00.1	00.I	1.00	1.00	00.1	00.1	1.00	00.1	00.1	00.1	00.1	9.
180 180	work zone On Approach	0101	NO	010	0107	NO	0107	0101	NO	0101	010	NO	0101
247 1070 353 27 79 479 8 30 27 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Adj Sat Flow, veryn/in	18/0	1000	0/81	0/81	0/81	0/81	0/81	0/81	0/81	0/81	0/81	18/0
29 2 186 66 282 1747 86 101 204 145 374 109 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.	Adj Flow Rate, Velini	/ 47	0601	200	17	0 00	44	0 0	000	17	000	0, 0	607
369 2186 66 282 144 8 101 204 145 314 109 108 0.62 0.62 0.65 1051 0.51 0.51 0.50 0.50 0.50 0.54 1781 105 1781 132 1 132 1 133 1 107 123 1 141 0.5 1 141 141 141 141 141 141 141 141 141	Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
369 2180 0.00 282 144 180 101 240 145 314 109 100 0.08 101 240 145 314 109 100 0.08 101 240 145 314 109 1781 3521 107 502 3447 169 1781 107 723 1781 454 17 1840 1781 107 723 1781 454 17 1840 1781 107 177 1840 1781 107 1840 1781 107 172 1781 107 170 1781 107 170 170 170 170 170 170 170 170 17	elceill Heavy ven, %	7	7000	7	7	7	7 7	7 704	7	7 111	7	7 00,	7
1781 3221 107 500 247 169 1781 1017 273 1781 454 1781 3221 1077 500 247 1861 261 041 042 042 042 042 042 042 042 042 042 042	ap, ven/n	369	7180	90	787	1/4/	80	101	204	145	3/4	601	687
1/61 354 107 302 3447 109 101 723 1781 434 434 1781 1777 1851 302 3447 1781 1777 1851 302 1777 1840 1781 0 1740 1781 0 1781 1777 1851 302 1777 1840 1781 0 1740 1781 0 0 1781 1777 1851 302 1777 1840 1781 0 1740 1781 0 0 0 0 0 0 0 0 0	Allive Officien	0.08	0.02	10.0	0.0	10.0	10.0	10.0	0.20	0.20	0.00	0.24	120
1781 1772 1881 502 1777 1880 1781 0 0 0 0 0 0 0 0 0	Sat Flow, velVII	10/1	1200	101	200	2447	601	10/1	101	173	101	404	2021
1781 177 1881 502 1777 1880 1781 0 1740 1781 0 1781 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	orp Volume(v), ven/h	747	220	5/3	17	514	533	9	0	65	8	0	35/
8.3 22.1 22.1 4.1 2.61 2.61 0.3 00 4.0 4.9 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.0	3rp Sat Flow(s),veh/h/ln	1781	1777	1851	205	1777	1840	1781	0	1740	1781	0	1654
8.3 22.1 22.1 11.3 26.1 26.1 0.3 0.0 4.0 4.9 0.0 3.60 1103 1149 282 901 933 101 0 349 374 0 3.65 0.50 0.50 0.10 0.57 0.57 0.06 0.00 0.19 0.23 0.00 3.65 1103 1149 282 901 933 101 0 349 374 0 3.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	2 Serve(g_s), s	8.3	22.1	22.1	4.1	26.1	26.1	0.3	0.0	4.0	4.9	0:0	27.2
1100 0066 1000 0099 100 042 1100 0349 1103 1149 282 901 933 1163 0 349 174 0 0 036 0110 0 1149 282 901 933 163 0 0 0 036 0110 0 1100 1100 1100 1	Sycle Q Clear(g_c), s	8.3	22.1	22.1	11.3	26.1	26.1	0.3	0.0	4.0	4.9	0.0	27.2
369 1103 1149 282 901 933 101 0 349 334 0 067 050 050 010 0157 057 050 000 019 033 0 1100 <td>Prop In Lane</td> <td>1.00</td> <td></td> <td>90.0</td> <td>1.00</td> <td></td> <td>0.09</td> <td>1.00</td> <td></td> <td>0.42</td> <td>1.00</td> <td></td> <td>0.73</td>	Prop In Lane	1.00		90.0	1.00		0.09	1.00		0.42	1.00		0.73
0.67 0.56 0.56 0.50 0.10 0.57 0.57 0.06 0.00 0.19 0.23 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.0	ane Grp Cap(c), veh/h	369	1103	1149	282	901	933	101	0	349	374	0	398
535 1103 1149 282 901 933 163 0 502 488 0 1.00	//C Ratio(X)	0.67	0.50	0.50	0.10	0.57	0.57	90.0	0.00	0.19	0.23	0.00	0.90
1.00 1.00	4vail Cap(c_a), veh/h	535	1103	1149	282	901	933	163	0	205	488	0	265
1100 1100 0.055 0.55 0.55 100 0.00 1100 1.00 0.00 1104 13.5 13.5 20.7 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22	HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1:00	1.00	1.00
174 135 135 207 223 223 427 00 431 368 000 21 1 16 15 04 15 140 02 00 03 03 03 25 9.1 9.5 0.5 11.2 11.6 0.2 0.0 1.8 2.2 0.0 26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27 15.1 15.1 21.1 23.7 23.7 43.0 0.0 43.4 37.1 0.0 28 B B C C C D A D D A H 1370 1074 C D A B S5.1 23.6 4.3 4 8.6 7 8 24.0 6.0 4.0 6.5 6.0 4.5 6.5 25.3 34 6.0 5.5 37.8 25.2 25 25 25 25 25 25 25 25 25 25 25 25 25	Jpstream Filter(I)	1.00	1.00	1.00	0.55	0.55	0.55	1.00	0.00	1.00	1.00	0.00	1.00
2.1 1.6 1.5 0.4 1.5 1.4 0.2 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Jniform Delay (d), s/veh	17.4	13.5	13.5	20.7	22.3	22.3	42.7	0.0	43.1	36.8	0.0	47.8
100 0.0	ncr Delay (d2), s/veh	2.1	1.6	1.5	0.4	1.5	1.4	0.2	0.0	0.3	0.3	0.0	11.7
35 9,1 9,5 0,5 11,2 11,6 0,2 0,0 18 2,2 0,0 B B B C C C D A D D A 1370 1074 71 D D A 15,9 23,6 43,4 55,1 1 2 3 4 6 7 8 23,0 34,0 15,0 37,5 61,0 5,5 46,5 103 28,1 6,9 6,0 24,1 23 29,2 25,2 C C D A D D A 444 771 0 D A 444 55,1 E E 1 2 3 4 6 7 8 240 4,0 6,5 6,5 6,5 253 34,0 15,0 37,5 61,0 5,5 46,5 103 28,1 6,9 6,0 24,1 2,3 29,2 C C C C D A D D A 444 55,1 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0:0	0:0
195 15.1 15.1 21.1 23.7 23.7 43.0 0.0 43.4 37.1 0.0 B B B C C C D A D D A 1370	%ile BackOfQ(50%),veh/ln	3.5	9.1	9.5	0.5	11.2	11.6	0.2	0.0	1.8	2.2	0.0	12.5
195 15,1 15,1 21,1 23,7 23,7 430 0.0 43,4 37,1 0.0	Jnsig. Movement Delay, s/veh												
B B C C C D A D D 1370	_nGrp Delay(d),s/veh	19.5	15.1	15.1	21.1	23.7	23.7	43.0	0.0	43.4	37.1	0.0	59.5
1370 1074 71 15.9 23.6 43.4 15 B C D D 14.8 71.9 10.7 32.6 86.7 55 37.8 4.0 6.0 4.0 6.5 6.0 4.5 6.5 7.5 23.0 34.0 15.0 37.5 61.0 5.5 46.5 7.5 10.3 28.1 6.9 6.0 24.1 2.3 29.2 0.6 3.3 0.1 0.3 9.5 0.0 2.2 C C	-nGrp LOS	В	В	В	ပ	ပ	ပ	O	Α	O	О	Α	۳
15.9 23.6 43.4 B C D D 1 2 3 4 6 7 8 4.0 6.0 4.0 6.5 6.0 4.5 6.5 5.5 23.0 34.0 15.0 37.5 61.0 5.5 46.5 5.5 10.3 28.1 6.9 6.0 24.1 2.3 29.2 0.6 3.3 0.1 0.3 9.5 0.0 2.2 C C	Approach Vol, veh/h		1370			1074			71			444	
1 2 3 4 6 7 148 71.9 10.7 32.6 86.7 5.5 6.0 4.5 4.0 6.0 4.0 6.5 6.0 4.5 5.5 23.0 34.0 15.0 37.5 61.0 5.5 5.5 10.3 28.1 6.9 6.0 24.1 2.3 0.6 3.3 0.1 0.3 9.5 0.0	Approach Delay, síveh		15.9			23.6			43.4			55.1	
148 71,9 10,7 32,6 86,7 55,5 10,0 8.0 10,0 32,6 86,7 55,5 10,2 33,0 34,0 15,0 37,5 61,0 5,5 10,3 28,1 6,9 6,0 24,1 2,3 0,6 3,3 0,1 0,3 9,5 0,0 C C	Approach LOS		В			ပ			Ω			ш	
14.8 71.9 10.7 32.6 86.7 5.5 4.0 6.0 4.0 6.5 6.0 4.5 5.5 23.0 34.0 15.0 37.5 61.0 5.5 5.5 10.3 28.1 6.9 6.0 24.1 2.3 0.6 3.3 0.1 0.3 9.5 0.0	Timer - Assigned Phs	-	2	က	4		9	7	00				
7,5 23.0 34.0 15.0 37.5 6.0 4.5 7.5 23.0 34.0 15.0 37.5 61.0 55.5 6.0 6.0 6.3 24.1 2.3 2.5 6.0 6.0 6.3 3.3 0.1 0.3 9.5 0.0 6.0 C.	Phs Duration (G+Y+Rc), s	14.8	71.9	10.7	32.6		86.7	5.5	37.8				
23.0 34.0 15.0 37.5 61.0 5.5 10.3 28.1 6.9 6.0 24.1 2.3 0.6 3.3 0.1 0.3 9.5 0.0 25.2 C	Change Period (Y+Rc), s	4.0	0.9	4.0	6.5		0.9	4.5	6.5				
10.3 28.1 6.9 6.0 24.1 2.3 0.6 3.3 0.1 0.3 9.5 0.0 25.2 C	Max Green Setting (Gmax), s	23.0	34.0	15.0	37.5		61.0	5.5	46.5				
0.6 3.3 0.1 0.3 9.5 0.0 25.2 C	Max Q Clear Time (g_c+I1), s	10.3	28.1	6.9	0.9		24.1	2.3	29.5				
	Green Ext Time (p_c), s	9.0	3.3	0.1	0.3		9.5	0.0	2.2				
	Intersection Summary												
	HCM 6th Ctrl Delay			25.2									
	HCM 6th LOS			ပ									

Notes
User approved pedestrian interval to be less than phase max green.

02/12/2019 CivTech BR

Synchro 10 Report Page 1

9: Scottsdale Rd & Lincoln Dr Timings Smoke Tree Resort 2020 Total AM Mitigated

								l			
	4	1	1	\	ţ	*	+	J	_	•	
		ì	•	•		-	-		•	,	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	*	4	*	je-	₩\$	F	4413	r	**	¥C_	
Traffic Volume (vph)	461	38	469	37	36	307	1316	51	1669	615	
Future Volume (vph)	461	38	469	37	36	307	1316	21	1669	615	
Turn Type	Split	NA	vo+mq	Split	NA	Prot	NA	Prot	A	vo+mq	
Protected Phases	4	4	2	∞	∞	2	2	_	9	4	
Permitted Phases			4							9	
Detector Phase	4	4	വ	∞	00	വ	2	-	9	4	
Switch Phase											
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	10.0	2.0	10.0	7.0	
Minimum Split (s)	13.0	13.0	13.0	13.0	13.0	13.0	16.7	11.0	16.0	13.0	
Total Split (s)	32.0	32.0	27.0	21.0	21.0	27.0	54.0	23.0	20.0	32.0	
Total Split (%)	24.6%	24.6%	20.8%	16.2%	16.2%	20.8%	41.5%	17.7%	38.5%	24.6%	
Yellow Time (s)	4.0	4.0	4.0	3.6	3.6	4.0	4.7	3.3	4.7	4.0	
All-Red Time (s)	1.5	1.5	1.5	2.0	2.0	1.5	1.0	2.0	1.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	9.6	9.6	5.5	2.7	5.3	5.7	5.5	
Lead/Lag			Lead			Lead	Lag	Lead	Lag		
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	None	None	None	None	C-Max	None	
Act Effct Green (s)	24.9	24.9	42.4	8.1	8.1	17.4	68.3	9.8	57.2	87.8	
Actuated g/C Ratio	0.19	0.19	0.33	90:0	90:0	0.13	0.53	0.07	0.44	89.0	
v/c Ratio	0.86	98.0	0.82	0.37	0.37	0.74	0.57	0.49	0.83	0.57	
Control Delay	95.4	95.1	34.7	1.79	32.0	63.9	23.3	71.6	37.1	7.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	95.4	95.1	34.7	1.79	32.0	63.9	23.3	71.6	37.1	7.2	
TOS SOT	ш	ш	ပ	ш	ပ	ш	S	ш	۵	A	
Approach Delay		62.9			42.9		30.8		30.0		
Approach LOS		ш			Q		ပ		ပ		
Intersection Summary											
Cycle Length: 130											
Actuated Cycle Length: 130											
Offset: 0 (0%), Referenced to phase 6:SBT, Start of Green	phase 6:	SBT, Sta	rt of Gree	_							
Natural Cycle: 90											
Control Type: Actuated-Coordinated	dinated										
Maximum v/c Ratio: 0.86											
Intersection Signal Delay: 37.4	4.			Ī	Intersection LOS: D	LOS: D					
Intersection Capacity Utilization 81.1%	on 81.1%			೦	ICU Level of Service D	f Service	D				
Analysis Period (min) 15											

? Ø6 (R) 02 \$Ø **₹**

Splits and Phases: 9: Scottsdale Rd & Lincoln Dr

02/12/2019 CivTech BR

Smoke Tree Resort 2020 Total AM Mitigated

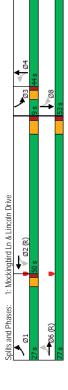
9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

												,
		Ì	•	•			-	-			•	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F	4	¥C.	K	*		K	441		je.	444	×.
Traffic Volume (veh/h)	461	38	469	37	36	48	307	1316	39	21	1669	615
Future Volume (veh/h)	461	38	469	37	36	48	307	1316	39	21	1669	615
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1:00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1:00	1.00
Work Zone On Approach		8			9			8			2	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	542	0	521	41	40	23	341	1462	43	27	1854	683
Peak Hour Factor	0.00	06:0	0.90	0.90	0.00	06:0	0.00	06:0	0.00	06:0	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	726	0	206	96	96	82	366	2123	62	74	1740	863
Arrive On Green	0.20	0.00	0.20	0.02	0.05	0.05	0.12	0.42	0.42	0.04	0.34	0.34
Sat Flow, veh/h	3563	0	1585	1781	1777	1585	3456	2008	150	1781	2106	1585
Grp Volume(v), veh/h	542	0	521	41	40	53	341	916	529	22	1854	683
Grp Sat Flow(s),veh/h/ln	1781	0	1585	1781	1777	1585	1728	1702	1843	1781	1702	1585
O Serve(g_s), s	18.6	0.0	26.5	5.9	2.8	4.3	12.6	30.5	30.5	4.1	44.3	44.3
Cycle Q Clear(g_c), s	18.6	0.0	26.5	5.9	2.8	4.3	12.6	30.5	30.5	4.1	44.3	44.3
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.08	1.00		1.00
Lane Grp Cap(c), veh/h	726	0	206	95	95	82	366	1417	298	74	1740	863
V/C Ratio(X)	0.75	0.00	1.03	0.43	0.42	0.63	98.0	69:0	69:0	0.77	1.07	0.79
Avail Cap(c_a), veh/h	726	0	206	211	210	188	572	1417	299	243	1740	863
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	48.6	0.0	44.2	29.6	29.6	60.3	56.4	31.0	31.0	61.7	42.9	23.6
Incr Delay (d2), s/veh	3.8	0.0	47.8	1.7	[]	2.8	6.3	1.2	2.2	6.4	41.5	7.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0
%ile BackUrU(50%),ven/in	8.6	0.0	8.77	.3	3	<u></u>	2.8	177	13.9	7.0	72.1	24.4
Unsig. Movement Delay, siven	F C 2	0	5	0 07	2 07	107	107	,,,,	22.7	107	0.40	0.00
Lingip Delay(u),s/veii	4.2c	0.0	1.27 F	0.00	. B	- СО	02.7 F	32.2	23.5	- OO	04.3 T	20.7
Approach Vol. veh/h	2	1063		1	134	ı	1	1846		ı	2594	
Approach Delay, s/veh		71.8			61.6			38.1			6.69	
Approach LOS		ш			ш			Q			ш	
Timer - Assianed Phs	-	2		4	2	9		00				
Phs Duration (G+Y+Rc), s	10.7	59.8		32.0	20.5	50.0		12.5				
Change Period (Y+Rc), s	* 5.3	5.7		5.5	5.5	5.7		9.9				
Max Green Setting (Gmax), s	* 18	48.3		26.5	21.5	44.3		15.4				
Max U Clear Time (g_c+IT), s	P. 9	32.5		28.5	14.6	46.3		6.3				
Green Ext Time (p_c), s	0.0	7.1		0.0	0.4	0.0		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			26.7									
HCM 6th LOS			ш									
			J									

Synchro 10 Report Page 10

neues

User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for furning movement.


*HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

02/12/2019

CVTech BR

Smoke Tree Resort 1: Mockingbird Ln & Lincoln Drive 2020 Total PM

	^	†	•	ţ	•	-	۶	→	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
-ane Configurations	*	₩.	*	₩	*	£,	*	æ.	
raffic Volume (vph)	246	888	25	949	7	62	99	48	
-uture Volume (vph)	246	888	25	949	7	62	92	48	
urn Type	pm+pt	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases		9		2		4	3	œ	
Permitted Phases	9		2		4		∞		
Detector Phase	-	9	2	2	4	4	23	∞	
Switch Phase									
Minimum Initial (s)	3.5	15.0	15.0	15.0	7.0	7.0	3.5	7.0	
Minimum Split (s)	8.0	27.0	27.0	27.0	33.5	33.5	8.0	33.5	
otal Split (s)	27.0	77.0	20.0	20.0	44.0	44.0	0.6	53.0	
otal Split (%)	20.8%	59.2%	38.5%	38.5%	33.8%	33.8%	%6.9	40.8%	
(ellow Time (s)	3.0	4.5	4.5	4.5	4.0	4.0	3.0	4.0	
All-Red Time (s)	1.0	1.5	1.5	1.5	2.5	2.5	1.0	2.5	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Lost Time (s)	4.0	0.9	0.9	0.9	6.5	6.5	4.0	6.5	
.ead/Lag	Lead		Lag	Lag	Lag	Lag	Lead		
.ead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes		
Recall Mode	None	С-Мах	С-Мах	С-Мах	None	None	None	None	
Act Effct Green (s)	101.1	99.1	76.2	76.2	11.2	11.2	20.9	18.4	
Actuated g/C Ratio	0.78	0.76	0.59	0.59	0.09	0.09	0.16	0.14	
/c Ratio	0.59	0.38	0.09	0.55	0.09	0.55	0.39	0.64	
Control Delay	11.8	6.2	10.4	19.8	54.7	61.1	51.9	27.6	
Dueue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	11.8	6.2	10.4	19.8	54.7	61.1	51.9	27.6	
SO:	В	A	Ω	Ω	٥	ш	۵	O	
Approach Delay		7.4		19.6		9.09		33.5	
Approach LOS		A		В		ш		ပ	
ntersection Summary									
Sycle Length: 130									
Actuated Cycle Length: 130									
Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green	phase 2:	WBTL an	d 6:EBTI	., Start of	Green				
Vatural Cycle: 90									
Control Type: Actuated-Coordinated	dinated								
Maximum v/c Ratio: 0.64									
ntersection Signal Delay: 16.9	6.			드	Intersection LOS: B	LOS: B			
ntersection Capacity Utilization 67.8%	ion 67.8%			2	CU Level of Service C	of Service	S		
Analysis Period (min) 15									

02/11/2019 Synchro 10 Report CivTech BR Page 1

Smoke Tree Resort 2020 Total PM

1: Mockingbird Ln & Lincoln Drive HCM 6th Signalized Intersection Summary

	4	†	<i>></i>	>	ţ	4	•	←	•	٠	→	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	-	4		r	4		r	£3		K	2	
Traffic Volume (veh/h)	246	888	29	25	949	99	7	62	20	99	48	156
Future Volume (veh/h)	246	888	29	25	949	99	7	62	20	99	48	156
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		8			8			8			8	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	273	787	32	28	1054	73	∞	69	22	72	23	173
Peak Hour Factor	0.90	06:0	06:0	06:0	06:0	06:0	06:0	06:0	06:0	06:0	0.90	0.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	462	2612	82	411	2167	150	98	124	39	179	62	202
Arrive On Green	0.07	0.74	0.74	0.85	0.85	0.85	0.09	0.09	0.09	0.04	0.16	0.16
Sat Flow, veh/h	1781	3513	114	553	3372	233	1155	1359	433	1781	386	1258
Grp Volume(v), veh/h	273	466	520	28	222	572	∞	0	91	72	0	226
Grp Sat Flow(s),veh/h/ln	1781	1777	1850	553	1777	1828	1155	0	1792	1781	0	1644
Q Serve(g_s), s	6.4	13.0	13.0	1.0	10.1	10.1	6.0	0.0	6.3	4.7	0:0	17.4
Cycle Q Clear(g_c), s	6.4	13.0	13.0	1.0	10.1	10.1	9.3	0.0	6.3	4.7	0.0	17.4
Prop In Lane	1.00		90.0	1.00		0.13	1.00		0.24	1.00		0.77
Lane Grp Cap(c), veh/h	462	1321	1375	411	1142	1175	98	0	163	179	0	264
V/C Ratio(X)	0.59	0.38	0.38	0.07	0.49	0.49	0.09	0.00	0.56	0.40	0.00	0.86
Avail Cap(c_a), veh/h	653	1321	1375	411	1142	1175	314	0	217	179	0	588
HCM Platoon Ratio	1.00	1.00	1.00	1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.54	0.54	0.54	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	6.9	5.9	5.9	3.4	4.1	4.1	62.0	0.0	9.99	49.8	0.0	53.1
Incr Delay (d2), s/veh	1.2	0.8	0.8	0.2	0.8	0.8	0.5	0.0	2.9	1.4	0.0	7.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0:0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.4	4.7	4.9	0.1	2.8	2.9	0.3	0.0	3.0	2.2	0.0	7.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	8.1	8.9	6.7	3.6	4.9	4.9	62.5	0.0	59.5	51.2	0.0	61.0
LnGrp LOS	V	A	A	A	A	A	ш	A	ш	٥	A	ш
Approach Vol, veh/h		1292			1155			66			298	
Approach Delay, s/veh		7.0			4.9			29.8			58.7	
Approach LOS		A			A			ш			ш	
Timer - Assigned Phs	-	2	က	4		9		00				
Phs Duration (G+Y+Rc), s	13.1	9.68	9.0	18.3		102.7		27.3				
Change Period (Y+Rc), s	4.0	0.9	4.0	6.5		0.9		6.5				
Max Green Setting (Gmax), s	23.0	44.0	2.0	37.5		71.0		46.5				
Max Q Clear Time (g_c+I1), s	8.4	12.1	6.7	11.3		15.0		19.4				
Green Ext Time (p_c), s	0.7	6.7	0.0	0.5		8.6		1.5				
Intersection Summary												
HCM 6th Ctrl Delay			13.4									
HCM 6th LOS			В									

02/11/2019 Synchro 10 Report

Smoke Tree Resort 2020 Total PM Trinigs

	1	†	¥	•	-	٠	-	
ane Group	EBL	EBT	WBT	NBL	NBT	SBL	SBT	
ane Configurations	F	₩	₩		4	*	42	
raffic Volume (vph)	82	904	945	-	0	14	0	
uture Volume (vph)	82	904	945	-	0	14	0	
Furn Type	pm+pt	NA	AA	Perm	NA	Perm	NA	
Protected Phases	7	4	∞		2		9	
Permitted Phases	4			2		9		
Detector Phase	7	4	∞	2	2	9	9	
Switch Phase								
Minimum Initial (s)	3.5	15.0	15.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	8.0	28.0	28.0	33.0	33.0	33.0	33.0	
otal Split (s)	20.0	94.0	74.0	36.0	36.0	36.0	36.0	
otal Split (%)	15.4%	72.3%	26.9%	27.7%	27.7%	27.7%	27.7%	
fellow Time (s)	3.0	4.0	4.0	4.5	4.5	4.5	4.5	
VII-Red Time (s)	1.0	2.5	2.5	1.5	1.5	1.5	1.5	
ost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0	0.0	
otal Lost Time (s)	4.0	6.5	6.5		0.9	0.9	0.9	
.ead/Lag	Lead		Lag					
.ead-Lag Optimize?	Yes		Yes					
Recall Mode	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effet Green (s)	0.89	65.5	51.3		52.0	52.0	52.0	
Actuated g/C Ratio	0.52	0.50	0.39		0.40	0.40	0.40	
//c Ratio	0.42	0.56	0.77		0.00	0.03	0.13	
Control Delay	29.9	35.0	44.1		0.0	28.9	0.3	
Queue Delay	0.0	0.0	0.0		0.0	0.0	0.0	
otal Delay	29.9	35.0	44.1		0.0	28.9	0.3	
SO:	S	O	۵		A	O	⋖	
Approach Delay		34.5	44.1				4.2	
Approach LOS		ပ	Ω				A	
ntersection Summary								
ycle Length: 130								
Actuated Cycle Length: 130								
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green	o phase 2:1	NBTL and	16:SBTL	Start of	Green			
Natural Cycle: 70								
Control Type: Actuated-Coordinated	rdinated							
Maximum v/c Ratio: 0.77								
ntersection Signal Delay: 37.4	7.4			_	Intersection LOS: D	n LOS: D		
ntersection Capacity Utilization 59.2%	ion 59.2%			S	ICU Level of Service B	of Service	Ве	
Analysis Period (min) 15								

02/11/2019 Synchro 10 Report CivTech BR Page 3

Smoke Tree Resort 2020 Total PM

2: Quail Run Rd & Lincoln Drive HCM 6th Signalized Intersection Summary

	•		,	١	Į	•	1	4	4			
	\	Ť	~	-	,	/		_	•	٠	+	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F	₩		r	₽			÷		K	2,	
Traffic Volume (veh/h)	82	904	2	0	945	25	-	0	2	14	0	93
Future Volume (veh/h)	82	904	2	0	945	25	1	0	2	14	0	93
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		N N			9			9			No No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	94	1004	2	0	1050	28	-	0	2	16	0	103
Peak Hour Factor	06.0	06.0	06:0	06.0	06.0	06:0	06:0	06:0	06:0	06:0	0.00	0.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	182	1571	m	22	1250	33	251	17	462	726	0	748
Arrive On Green	0.09	0.86	0.86	0.00	0.35	0.35	0.47	0.00	0.47	0.47	0.00	0.47
Sat Flow, veh/h	1781	3639	7	260	3536	94	453	36	876	1415	0	1585
Grp Volume(v), veh/h	94	490	516	0	528	220	3	0	0	16	0	103
Grp Sat Flow(s),veh/h/ln	1781	1777	1869	260	1777	1853	1468	0	0	1415	0	1585
Q Serve(g_s), s	4.3	10.9	10.9	0.0	35.5	35.5	0.0	0.0	0.0	0:0	0.0	4.8
Cycle Q Clear(g_c), s	4.3	10.9	10.9	0.0	35.5	35.5	4.8	0.0	0.0	0.7	0.0	4.8
Prop In Lane	1.00		0.00	1.00		0.02	0.33		19.0	1.00		1.00
-ane Grp Cap(c), veh/h	182	767	807	22	628	655	730	0	0	726	0	748
V/C Ratio(X)	0.52	0.64	0.64	0.00	0.84	0.84	0.00	0.00	0.00	0.05	0.00	0.14
4vail Cap(c_a), veh/h	317	1196	1258	148	923	962	730	0	0	726	0	748
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1:00	1.00	1.00
Jpstream Filter(I)	0.93	0.93	0.93	0.00	1.00	1.00	1.00	00.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	28.4	9	2.8	0.0	38.6	38.6	18.2	0.0	0:0	18.3	0.0	19.4
ncr Delay (d2), s/veh	2.1	0.8	0.8	0.0	4.6	4.5	0.0	0.0	0.0	0.1	0.0	0.4
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.8	2.4	2.5	0.0	16.2	16.8	0.1	0.0	0.0	0.3	0.0	1.9
Unsig. Movement Delay, s/veh				d	9		0	d	d		c	1
LnGrp Delay(d),s/ven	30.5	9.9	9.9	0.0	43.3	43.1	18.2	0.0	0.0	18.4	0.0	8.61
LNGrp LUS	اد	∢ .	⋖	⋖	اد	اد	20	∢	×	20	∢ !	2
Approach Vol, veh/h		1100			1078			က			119	
Approach Delay, sweh		9.8			43.2			18.2			19.6	
Approach LOS		A			O			Ω			Ω	
Timer - Assigned Phs		2		4		9	7	8				
Phs Duration (G+Y+Rc), s		67.4		62.6		67.4	10.2	52.5				
Change Period (Y+Rc), s		0.9		6.5		0.9	4.0	6.5				
Max Green Setting (Gmax), s		30.0		87.5		30.0	16.0	67.2				
Max Q Clear Time (g_c+I1), s		8.9		12.9		9.9	6.3	37.5				
Green Ext Time (p_c), s		0.0		8.5		9.0	0.1	8.5				
Intersection Summary												
			A 7C									
			72.4									

02/11/2019 CivTech BR

Smoke Tree Resort 2020 Total PM

4: Smoke Tree Access B & Lincoln Dr

acitocontai	Int Delay, s/veh	Movement	Lane Configurations	Traffic Vol, veh/h	Future Vol, veh/h	Conflicting Peds, #/hr	Sign Control	RT Channelized	Storage Length	Veh in Median Storage	Grade, %	Peak Hour Factor	Heavy Vehicles, %	WYM FIOW	Major/Minor	Conflicting Flow All	Stage 1	Stage 2	Critical Hdwy	Critical Hdwy Stg 1	Critical Hdwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Stage 2	Mar Can 1 Manager	Mov Cap-1 Maneuver	Stage 1	Stage 2	Approach	HCM Control Delay, s	HCM LOS	Minor Lane/Major Mvm	Capacity (veh/h)	HCM Lane V/C Ratio	HCM Control Delay (s)	HCM Lane LOS	HCM 95th %tile U(ven
l .			1													1																						
		NBR		34	34	0	Stop	ne		,		06	2	×		512			6.94			3.32	507			507	/0						3T					
		NBL NE	>		18		Stop St	- None	0	0	0	06	2 5	07	or1	1622 5	1012			5.84				312	202	00		202	505	NB	18.1	ပ	/BL WBT	674)59	10.7	<u>ه</u>	0.7
		WBT N	‡		953		Free Si	one	,	0		8	2 5	6601	Minor1	0 16		,	- 6	- 2	- 5	. 3			,		Ι,		,				EBR WBL		- 0.059			
		WBL W			36	0	ree F	- None	25	÷		06		40	or2	323	·		4.14			2.22	674			V L 7	5/4			WB	0.4		EBT E	ï		÷		
		EBR M		70	20	0	ree F	None	,	,		8	2	77	Major2	0 1023		,	-			- 2											NBLn1 E	333	0.174	18.1	ر د	0.0
	0.7	EBT E	₹	901	901	0	Free Free	2	,		0	06	2 5	1001	Major1	0		,												EB	0		NB		0	,_		
							_			orage, #		_			Ma	II.				-	2		Iver		à	9,	inver	nve u			ay, s		r Mvmt		atio	ay (s)	:	J(ven)
5	síveh	+	nfiguration	ol, veh/h	ol, veh/h	g Peds,	trol	nelized	ength-	edian St		ır Facto	ehicles,	>	JOL	g Flow	Stage 1	Stage 2	dwy	dwy Stg	dwy Stg	Hdwy	1 Mane	Stage 1	Stage 2	ockea,	- I Mane	Stage 1	Stage 2	_	ntrol Del	S	ne/Majo	(veh/h)	IE V/C F	ntrol Del	e LOS	wille (
Inforcoction	Int Delay, s/veh	Movement	Lane Configurations	Traffic Vol, veh/h	Future Vol, veh/h	Conflicting Peds, #/hr	Sign Control	RT Channelized	Storage Length	Veh in Median Storage, #	Grade, %	Peak Hour Factor	Heavy Vehicles, %	MVMT FIOW	Major/Minor	Conflicting Flow All	St	Š	Critical Hdwy	Critical Holwy Stg 1	Critical Holwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	iñ i	יאל ולי	Platoon blocked, %	Moy Cap-1 Maneuver	WOV CA	žŠ	Approach	HCM Control Delay, s	HCM LOS	Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	HCM Control Delay (s)	HCM Lane LOS	HCM 95th %tile Q(ven)

Synchro 10 Report Page 5

02/11/2019 CivTech BR

02/11/2019 CivTech BR

Synchro 10 Report Page 6

Smoke Tree Resort 2020 Total PM

5: Lincoln Medical West & Lincoln Dr $_{\mbox{\scriptsize HCM 6th TWSC}}$

WBT NBL NBI WBT NBL NBI WBT NBL NBI O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Int Delay, s/veh	0.7						
tions ↑₽ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑		EBT		WBL	WBT	NBL	NBR	~
h 928 7 21 959 30 h 728 7 21 959 30 h 728 7 21 959 30 l 70 0 0 0 0 0 0 0 l	Lane Configurations	\$		r	‡	2-		
h 928 7 21 959 30 Free Free Free Stop 0 0 0 0 None	Traffic Vol, veh/h	928	7	71	626	30	26	
None	Future Vol, veh/h	928	7	21	626	30	26	
Free Free Free Free Stop	eds, #/hr	0		0	0	0	0	
Storage, # 0		99		Free	Free	Stop	Stop	0
blorage, # 0	RT Channelized	•	None	•	None	•	None	
Storage,# 0	Storage Length	٠	•	22	•	0		
0	Veh in Median Storage,				0	0	,	
190 90 90 90 90 90 90 90 90 90 90 90 90 9	Grade, %	0		'	0	0	ľ	
2 2 2 2 2 2 2 2 2 2	Peak Hour Factor	06	06	8	06	8	8	
1031 8 23 1066 33 2	Heavy Vehicles, %	7	2	7	2	7	2	2
		1031	∞	23	1066	33	29	6
Minori M								
0 0 1039 0 1614 52 1035 4.14 - 6.84 6.9 4.14 - 6.84 6.9 4.14 - 6.84 6.9 2.22 - 5.84 2.22 - 3.52 3.3 665 - 95 50 665 - 95 50 665 - 92 50 665 - 92 50 665 - 92 50 5.24 6.52 - 92 5.24 2.22 5.24 2.22 2.22 5.24 2.22 2.22 2.22 2.22 5.24 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22		ajor1	2	1ajor2	2	linor1		
1035 1035 4.14 - 6.54 6.9 4.14 - 6.58 6.9 2.22 - 3.52 3.3 6.65 - 92 5.0 6.65 - 92 5.0 6.65 - 92 5.0 6.65 - 92 5.0 6.65 - 92 5.0 6.65 - 92 5.0 6.65 - 92 5.0 2.07 5.24 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07	Conflicting Flow All	0		1039	0	1614	520	
4.14 - 6.84 6.9 4.14 - 6.84 6.9 2.22 - 3.52 3.3 6.65 - 95 50 6.65 - 92 50 6.65 - 92 50 6.65 - 92 50 6.65 - 92 50 6.65 - 92 50 6.65 - 92 50 5.24 5.24 5.24 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22	Stage 1					1035		
4.14 - 6.84 6.9 2.22 - 5.84 2.22 - 3.52 3.3 6.65 - 95 50 6.65 - 95 50 6.65 - 92 50 6.65 - 92 50 6.65 - 92 50 6.65 - 92 50 6.65 - 92 50 6.65 - 92 50 6.65 - 92 50 6.65 - 92 6.65 - 92 6.65 - 92 6.65 - 92 6.65 - 92 6.65 - 92 6.65 - 92 6.65 - 92 6.65 - 6.65 6.65 6.65 6.65	Stage 2		'	'	'	579	ľ	
1.00 1.00 1.00 1.00 1.00 1.00	Critical Hdwy			4.14		6.84	6.94	7
5.84 5.84	Critical Hdwy Sta 1			'		5.84	ľ	
EB WE WE WE WE WE WE WE CASES 1.75 2.33 3.34 3.34 3.34 3.34 3.34 3.34 3.34	Critical Hdwy Stg 2					5 84	ľ	
1	Follow-IID Howy			2 22		3.52	3 32	
EB WB NBM NBM NBM NBM NBM NBM NBM NBM NBM NB	Dot Cap 1 Mapouner			445		9	501	
EB WB NB	ru cap-i maneuver			000		000	200	
EB WB NB	Stage I	٠	١	١	١	303		
EB WB NB NBIA1 EBT EBR WBL WB NBIA1 EBT EBR WBL WB 285 - 665 0.218 - 1065 21.1 - 1065	Stage 2		•	•	•	524	,	
10 10 10 10 10 10 10 10	Platoon blocked, %	٠	٠		٠			
EB WB NB WB WB NB	Mov Cap-1 Maneuver		1	999	1	92	501	
EB WB NB O 0.2 21.1 NBLN1 EBT EBR WBL WB 23.18 - 0.035 21.1 - 10.65 C - 0.035 21.1 - 10.65	Mov Cap-2 Maneuver	٠	•	•	•	207		
EB WB NB	Stage 1				•	292	ľ	
EB WB NB 0 0.2 21.1 C C NBLn1 EBT EBR WBL WB 285 - 665 0.278 - 0.035 21.1 - 10.6 C C	Stage 2				'	524	ľ	
EB WB NB	•							
0 0.2 21.1 C C C C C C C C C C C C C C C C C C	Approach	EB		WB		NB		
NBLAT EBT EBR WBL WB 285 - 665 0.218 - 0.035 21.1 - 106	HCM Control Delay, s	0		0.2		21.1		
NBLn1 EBT EBR WBL WB 285 665 665 603	HCM LOS					ပ		
NBIn1 EBT EBR WBL WB 285 - 665 0.218 - 0.035 21.1 - 10.6 C - B								
285 - 665 0.218 - 0.035 21.1 - 10.6 C - B	Minor Lane/Major Mvmt	2	BLn1	EBT	EBR	WBL	WBT	
0.218 - 0.035 21.1 - 10.6 C - B	Capacity (veh/h)		285			999	ľ	
21.1 10.6 C B	HCM Lane V/C Ratio		0.218			0.035	ľ	
B	HCM Control Delay (s)		21.1			10.6		
, do (40.)C	HCM Lane LOS		U	1	'	В	ľ	
· ·	() () () () () () () () () ()		0					

Smoke Tree Resort 6: Lincoln Medical East & Lincoln Dr 2020 Total PM

Intersection							
Int Delay, s/veh	0.2						
Movement	EBT	EBR WBL	WBL	WBT	NBL	NBR	
Lane Configurations	₹			*		*	
Traffic Vol, veh/h	950	4	0	616	2	90	
Future Vol, veh/h	950	4	0	616	7	8	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	1	None	1	None		None	
Storage Length						0	
Veh in Median Storage,	#	•		0	0	٠	
Grade, %	0			0	0		
Peak Hour Factor	06	8	06	8	06	8	
Heavy Vehicles, %	7	7	2	2	7	7	
Mvmt Flow	1056	4	0	1088	2	33	
Major/Minor N	Major1	2	Major2	2	Minor1		
Conflicting Flow All	0	0		٠	1602	230	
Stage 1	1	1	1	1	1058	1	
Stage 2	•	•	•	1	244	٠	
Critical Hdwy	1	1	1	1	6.84	6.94	
Critical Holwy Stg 1	•	•	•	•	5.84	٠	
Critical Hdwy Stg 2	•		1	•	5.84	•	
Follow-up Hdwy	•	٠		٠	3.52	3.32	
Pot Cap-1 Maneuver	•	•	0	•	96	493	
Stage 1	•	٠	0	•	295	٠	
Stage 2	•	•	0	•	246	•	
Platoon blocked, %	1	1		•			
Mov Cap-1 Maneuver	•	•	•	1	96	493	
Mov Cap-2 Maneuver	•	٠	•	٠	214	٠	
Stage 1	1	•	•	•	295	•	
Stage 2	•	•	•	•	246	٠	
Approach	EB		WB		NB		
HCM Control Delay, s	0		0		12.8		
HCM LOS					В		
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBT		
Capacity (veh/h)		493			•		
HCM Lane V/C Ratio		890:0		٠	•		
HCM Control Delay (s)		12.8	•	•	•		
HCM Lane LOS		ω ;	1	•	•		
HCM 95th %tile Q(veh)		0.2	•	•	•		

Synchro 10 Report Page 7

02/11/2019 CivTech BR

Smoke Tree Resort 2020 Total PM

7: Apartment Drwy & Lincoln Dr

Movement EBI Lane Configurations Traffic Vol, veh/h												
ane Contigurations raffic Vol, veh/h	٠,	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ffic Vol, veh/h	₹ +			*			4		-		r_	
	7 918			883	6	89	က	46	_	0	32	
uture Vol, veh/h	7 918			883 883	6	89	က	46	7	0	32	
eds, #/hr				0	0	0	0	0	0	0	0	
Sign Control Free	e Free	Eree	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
	į.	- None		1	None	1	1	None	1	1	None	
	25		25	•	•	•	•	•	0	•	0	
Veh in Median Storage, #	-	- 0	•	0	•	•	0	•	٠	0		
Grade, %	,	0		0			0			0		
Peak Hour Factor 9	06 06	06 (06	8	8	06	8	06	8	06	06	
0		2 2	2	2	2	2	2	7	7	7	2	
Wvmt Flow	8 1020	47	7	981	9	16	က	24	∞	0	36	
Major/Minor Major1	_		Major2		_	Minor1		2	Minor2			
Conflicting Flow All 991		0 0	1067	0	0	1565	2065	534	1528		496	
Stage 1	į.		•		•	1060	1060	•	1000	•		
Stage 2	,				•	202	1005	٠	528	٠		
Critical Hdwy 4.14	4		4.14	1	1	7.54	6.54	6.94	7.54	1	6.94	
Critical Hdwy Stg 1			ľ			6.54	5.54	٠	6.54	٠		
Critical Hdwy Stg 2	ļ,	Ì	•	1	•	6.54	5.54	1	6.54	1		
Follow-up Hdwy 2.22	2		2.22			3.52	4.02	3.32	3.52	•	3.32	
Pot Cap-1 Maneuver 693	3		649			~ 75	24	491	8	0	519	
Stage 1	,	ľ	'		'	239	299		261	0		
Stage 2			1		•	518	317	1	205	0		
Platoon blocked, %				1								
Mov Cap-1 Maneuver 693	23	1	649	•	1	~ 68	23	491	19	1	519	
Mov Cap-2 Maneuver	,		•		•	~ 68	23	•	19	•		
Stage 1	ì		1	1	•	236	295	1	258	1	ì	
Stage 2	,		'	'	1	474	314	•	436	•		
Approach	EB		WB			8			SB			
rol Delay, s	_	ı	0.1			258			21.4			
			;			-			C			
									,			
Vinor Lane/Major Mvmt	NBLn1	I EBL	EBT	EBR	WBL	WBT	WBR S	WBR SBLn1 SBLn2	BLn2			
Capacity (veh/h)	104	1 693	1		649			19	519			
HCM Lane V/C Ratio	1.282	0.011	ľ		0.01		•	0.116	0.075			
HCM Control Delay (s)	258	3 10.3		1	10.6	1	•	65.7	12.5			
HCM Lane LOS		B	ľ	ľ	В	ľ	•	ш	В			
HCM 95th %tile Q(veh)	9.1				0		•	0.4	0.2			
Notes												

02/11/2019 Synchiro 10 Report

Smoke Tree Resort 2020 Total PM

8: AJ's Drwy & Lincoln Dr HCM 6th TWSC

Intersection													
Int Delay, síveh	2.5												
Movement	EBL	EBT	EBR	WBL	WBT	EBR WBL WBT WBR NBL		NBT	NBR	SBL	SBT	SBR	
Lane Configurations	F	╬		F	₽			4		<u>r</u>		¥C	
Traffic Vol, veh/h	=	912	22	63	881	∞	14	-	92	4	0	7	
Future Vol, veh/h	Ξ	912	22	63	88	∞	14	-	92	4	0	7	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized		1	None	1	•	None		1	None		1	None	
Storage Length	25		٠	22		٠	٠	٠	٠	0		0	
Veh in Median Storage, #	*	0	•		0	•		0	1		0	ì	
Grade, %		0	•	•	0	٠	٠	0	٠	٠	0	٠	
Peak Hour Factor	06	8	06	8	06	06	06	8	06	06	8	06	
Heavy Vehicles, %	7	2	2	7	2	2	2	7	2	2	2	2	
Mvmt Flow	12	1013	61	2	616	6	16	_	102	4	0	∞	

	- 494			- 6.94			- 3.32	0 521	- 0	- 0		- 521												
Minor2	1655	1124	531	7.54	6.54	6.54	3.52		219 (200		45	45	215	387	SB	41.7	ш	BLn2	521	0.015	12	В	0
2	5 537	٠		1 6.94	,	,	2 3.32	1 488	٠.			3 488		•					S SBLn1S	- 45	- 0.099 0.015	- 93.6	ш.	- 0.3
Minor1	1698 2196	1068 1068	630 1128	7.54 6.54	6.54 5.54	6.54 5.54	3.52 4.02		237 296	436 278		54 39	54 39	233 291	383 248	NB	37.3	ш	WBT WBR SBLn1 SBLn2			ì		
M	0	,		ì	,	,	٠			÷		i							WBL	645	- 0.109	11.3	В	0.4
or2	1074 0	•		4.14			2.22	645 -				645 -				WB	0.7		EBT EBR			•		•
Major2	0 10	÷		- 4			- 2	-		ì		,							EBL E	969	0.018	10.3	В	0.1
_	0 8	1		4 -				اگ		1		- 969				EB	-		NBLn1	226	0.526 0.018	37.3	ш	2.8
Major1	₩ 988			4.14	_	2	2.22	ver 695			%		nver			ш	17, S 0.1		Mvmt		atio	1y (s)		(veh)
Major/Minor	Conflicting Flow All	Stage 1	Stage 2	Critical Hdwy	Critical Hdwy Stg 1	Critical Hdwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Stage 2	Platoon blocked, %	Mov Cap-1 Maneuver	Mov Cap-2 Maneuver	Stage 1	Stage 2	Approach	HCM Control Delay, s	HCM LOS	Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	HCM Control Delay (s)	HCM Lane LOS	HCM 95th %tile Q(veh)

Synchro 10 Report Page 9 02/11/2019 CivTech BR

Smoke Tree Resort 2020 Total PM

9: Scottsdale Rd & Lincoln Dr Timings

•	SBR	*	202	202	hm+ov	4	9	4		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5			None	84.5	0.65	0.53	11.8	0.0	11.8	В												
→	SBT	444	1569	1569	NA	9		9		10.0	16.0	57.0	43.8%	4.7	1.0	0.0	2.7	Lag		C-Max	54.3	0.42	0.82	38.0	0.0	38.0	۵	33.2	ပ										
۶	SBL	<u>, , , , , , , , , , , , , , , , , , , </u>	61	61	Prot			-		2.0	11.0	14.0	10.8%	3.3	2.0	0.0	5.3	Lead		None	7.9	90:0	0.64	85.4	0.0	85.4	ш												
←	NBT	4413	1624	1624	¥	2		2		10.0	16.7	73.0	56.2%	4.7	1.0	0.0	2.7	Lag		None	70.4	0.54	89.0	23.7	0.0	23.7	S	32.3	O									ш	
•	NBL	K.	427	427	Prot	2		2		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5	Lead		None	21.6	0.17	0.83	9.59	0.0	9.59	ш										LOS: D	ICU Level of Service E	
ţ	WBT	₩.	62	62	¥	∞		∞		7.0	13.0	13.0	10.0%	3.6	2.0	0.0	9.9			None	7.3	90:0	0.58	37.9	0.0	37.9	۵	52.2	D								Intersection LOS: D	U Level of	
>	WBL	je-	99	99	Spill	∞		∞		7.0	13.0	13.0	10.0%	3.6	2.0	0.0	9.6			None	7.3	90:0	0.63	8.98	0.0	8.98	ш						_				≟	2	
<i>></i>	EBR	*-	446	446	vo+mq	2	4	2		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5	Lead		None	46.1	0.35	0.82	22.9	0.0	22.9	O						t of Gree						
†	EBT	4	99	99	NA	4		4		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5			None	24.5	0.19	1.02	111.1	0.0	111.1	ш	73.0	ш				SBT, Star						
1	EBL	*	272	527	Spill	4		4		7.0	13.0	30.0	23.1%	4.0	1.5	0.0	5.5			None	24.5	0.19	1.02	111.5	0.0	111.5	ш						to phase 6:		rdinated		1.0	tion 83.0%	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Queue Delay	Total Delay	FOS	Approach Delay	Approach LOS	Intersection Summary	Cycle Length: 130	Actuated Cycle Length: 130	Offset: 0 (0%), Referenced to phase 6:SBT, Start of Green	Natural Cycle: 90	Control Type: Actuated-Coordinated	Maximum v/c Ratio: 1.02	Intersection Signal Delay: 41.0	Intersection Capacity Utilization 83.0%	Analysis Period (min) 15

Spilts and Phases: 9: Scottsdale Rd & Lincoln Dr

₩ ₩ Ø6 (R)

£ €

↓

₹

02/11/2019 CivTech BR

Smoke Tree Resort 2020 Total PM

9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

	1	†	<u> </u>	/	ļ	4	•	—	•	٠	→	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	je-	4	¥.	<u>r</u>	₩		K.	4413		je-	444	¥.
Traffic Volume (veh/h)	527	99	446	99	62	72	427	1624	45	61	1569	505
Future Volume (veh/h)	527	26	446	26	62	72	427	1624	45	61	1569	202
Initial Q (Qb), veh	0 6	0	0 6	0 6	0	0 6	0 6	0	0 0	0 0	0	0 0
Ped-bike Auj(A_pur) Darking Birs Adi	8.6	100	8.6	8.6	100	8.6	8.6	0	00.1	00.1	100	1.00
Work Zone On Approach	3	8 8	8.	8.	8 8	8:	3.	8 8	90:1	0.1	0 0 0 0 0 0	00:1
Adj Sat Flow, veh/h/In	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	630	0	496	62	69	80	474	1804	20	89	1743	561
Peak Hour Factor	0.90	0.00	0.00	0.00	0.00	06:0	06:0	06:0	0.00	0.00	0.00	06.0
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	671	0	543	101	101	06	532	2561	71	87	2015	924
Arrive On Green	90:0	0.00	90:0	90:0	90:0	90.0	0.15	0.50	0.50	0.02	0.39	0.39
Sat Flow, veh/h	3563	0	1585	1781	1777	1585	3456	5107	141	1781	2106	1585
Grp Volume(v), veh/h	630	0	496	62	69	8	474	1202	652	89	1743	261
Grp Sat Flow(s),veh/h/ln	1781	0	1585	1781	1777	1585	1728	1702	1845	1781	1702	1585
Q Serve(g_s), s	22.9	0.0	24.5	4.4	2.0	6.5	17.5	35.4	35.4	4.9	40.8	29.7
Cycle Q Clear(g_c), s	22.9	0.0	24.5	4.4	2.0	6.5	17.5	35.4	35.4	4.9	40.8	29.7
Prop In Lane	1.00		1:00	1.00		1.00	1.00		0.08	1.00		1.00
Lane Grp Cap(c), veh/h	671	0	543	101	101	06	532	1707	925	87	2015	924
V/C Ratio(X)	0.94	0.00	0.91	0.61	0.68	0.89	0.89	0.70	0.70	0.78	0.87	0.61
Avail Cap(c_a), veh/h	671	0	543	101	101	06	651	1762	955	119	2015	924
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1:00	1.00	1.00	1.00	1.00	1.00	1.00	1:00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	60.2	0.0	46.0	6.65	60.1	6.09	53.9	25.0	25.0	61.2	36.2	17.5
Incr Delay (d2), s/veh	20.7	0.0	19.7	7.6	14.4	57.9	11.3	1.0	1.9	13.9	5.3	3.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	12.9	0.0	17.6	2.2	2.6	4.1	8.4	14.3	15.7	5.6	17.7	17.2
Unsig. Movement Delay, siven	000	C	L 37	3 2 7	7 1/2	1100	C 37	0.70	0.70	1 17	N 1 N	N 0C
Lingip Delay(u), 3/veii Lingin LOS	00.7 H	0:0 A	. H		O. T.	0.01	2. Z	0.02	, 20.3 C	т.	<u>†</u>	F.0.5
Approach Vol. veh/h		1126	ı		211			2328			2372	
Approach Delay, s/veh		74.2			89.3			34.2			37.4	
Approach LOS		ш			ш			ပ			D	
Timer - Assigned Phs		2		4	2	9		8				
Phs Duration (G+Y+Rc), s	11.6	70.9		30.0	25.5	57.0		13.0				
Change Period (Y+Rc), s	* 5.3	5.7		5.5	5.5	5.7		9.9				
Max Green Setting (Gmax), s	* 8.7	67.3		24.5	24.5	51.3		7.4				
Max Q Clear Time (g_c+I1), s	6.9	37.4		26.5	19.5	42.8		8.5				
Green Ext Time (p_c), s	0.0	2.9		0.0	0.5	2.5		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			44.9									
HCM 6th LOS			Ω									

Synchro 10 Report Page 11

Smoke Tree Resort 2020 Total PM

10: Quail Run Rd & Access A

Movement	MBI	WBD	MRT	MRD	S	CRT	
novement	104	104	•	101	200	2	*
Lane Configurations	<u>}</u> -		4			*	·**
Traffic Vol, veh/h	0	-	0	0	_		0
Future Vol, veh/h	0		0	0	_		0
Conflicting Peds, #/hr	0	0	0	0	0		0
Sign Control	Stop	Stop	Free	Free	Free	Free	90
RT Channelized	1	None	1	None	•	None	Đ.
Storage Length	0	•	•				
Veh in Median Storage, #	0 #'6	•	0	٠	•		0
Grade, %	0	٠	0			-	0
Peak Hour Factor	8	06	8	06	06	6	06
Heavy Vehicles, %	2	2	7	2	2		2
Mvmt Flow	0	-	0	0	_		0
	Minor1	2	Major1	2	Major2		
Conflicting Flow All	2	0	0	0	0		0
Stage 1	0	•					
Stage 2	2	,	,	•			
Critical Hdwy	6.42	6.22	•	•	4.12		
Critical Hdwy Stg 1	5.42		,				
Critical Hdwy Stg 2	5.42	•	•				
Follow-up Hdwy	3.518	3.318	٠	•	2.218		
Pot Cap-1 Maneuver	1021	1	1				
Stage 1	,	,	,	•			
Stage 2	1021	•					
Platoon blocked, %			٠	٠			
Mov Cap-1 Maneuver	1021	•	•		1		
Mov Cap-2 Maneuver	1021	٠	٠	٠	•		
Stage 1	•	•	•		1		
Stage 2	1021	•	•	•	1		
Approach	WB		NB		SB		
HCM Control Delay, s			0				
HCM LOS							
Minor Lane/Major Mvmt	†L	NBT	NBRWBLn1	'BLn1	SBL	SBT	37
Capacity (veh/h)							
HCM Lane V/C Ratio		٠	٠				
HCM Control Delay (s)		•	•	•			
HCM Lane LOS		•	,	•	1		

Synchro 10 Report Page 12 02/11/2019 CivTech BR

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for furning movement

"HCM oth computational engine requires equal clearance times for the phases crossing the barrier.

02/11/2019

CivTech BR

Smoke Tree Resort 2020 Total PM Mitigated

1: Mockingbird Ln & Lincoln Drive

¥ 8 4 § ¥ 7.0 33.5 53.0 10.8% 4.0 2.5 0.0 6.5 Lag Yes None 21.0 0.16 0.59 24.8 3.5 8.0 19.0 14.6% 3.0 1.0 0.0 4.0 1.0 4.0 1.0 0.0 25.5 0.28 43.4 43.4 65 65 pm+pt Intersection LOS: B ICU Level of Service C 7.0 33.8% 44.0 4.0 2.5 0.0 6.5 Lag Yes None 11.2 0.09 0.05 61.1 E 59.2 5.0 9.5 10.0 7.7% 3.5 1.0 0.0 0.0 4.5 4.5 17.6 0.14 0.01 38.1 0.0 0.0 38.1 Cycle Length: 130
Actuard Cycle Length: 130
Offiset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green
Natural Cycle: 90 949 949 NA 25 25 Perm 15.0 27.0 40.0 30.8% 4.5 1.5 0.0 6.0 1.8 7 kes C-Max 7.2 0.76 0.16 0.16 8.5 8.5 C-Max 94.5 0.73 0.40 8.4 8.4 8.4 15.0 27.0 67.0 51.5% 4.5 1.5 0.0 \$88 888 NA Intersection Signal Delay: 16.4 Intersection Capacity Utilization 67.8% Analysis Period (min) 15 3.5 8.0 27.0 20.8% 3.0 1.0 0.0 4.0 1.0 4.0 1.0 0.0 9.6.5 0.74 17.6 17.6 246 246 pm+pt Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.65 Lane Configurations Traffic Volume (vph) Future Volume (vph) Switch Phase
Minimum Initial (s)
Minimum Initial (s)
Minimum Spit (s)
Toda Spit (%)
Yellow Time (s)
All-Red Time (s)
Lost Time Adjust (s)
Toda Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Intersection Summary Protected Phases Permitted Phases Approach Delay Approach LOS Detector Phase Control Delay Queue Delay Total Delay LOS Turn Type

₩ 604 ě 1: Mockingbird Ln & Lincoln Drive **★** Ø2 (R) Splits and Phases: ğ

- DE (R)

√ Ø7 **√** Ø8

Synchro 10 Report Page 1 02/12/2019 CivTech BR

Smoke Tree Resort 2020 Total PM Mitigated

1: Mockingbird Ln & Lincoln Drive HCM 6th Signalized Intersection Summary

	4	†	<i>></i>	>	ţ	✓	•	•	•	٠	→	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F	₩.		r	₩		r	£,		*	£,	
Traffic Volume (veh/h)	246	888	29	25	646	99	7	62	20	99	48	156
Future Volume (veh/h)	246	888	29	22	949	99	7	62	20	99	48	156
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		2			2			2			2	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	273	987	32	28	1054	73	∞	69	22	72	23	173
Peak Hour Factor	0.90	06:0	0.00	06:0	0.00	0.00	06:0	0.00	06:0	06:0	0.00	0.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	368	2456	80	377	1992	138	103	173	22	244	62	202
Arrive On Green	0.08	0.70	0.70	0.59	0.59	0.59	0.01	0.13	0.13	0.05	0.16	0.16
Sat Flow, veh/h	1781	3513	114	553	3372	233	1781	1359	433	1781	386	1258
Grp Volume(v), veh/h	273	499	520	28	555	572	8	0	91	72	0	226
Grp Sat Flow(s),veh/h/ln	1781	1777	1850	553	1777	1828	1781	0	1792	1781	0	1644
Q Serve(g_s), s	7.4	15.3	15.3	5.9	24.2	24.2	0.5	0.0	6.1	4.4	0.0	17.4
Cycle Q Clear(g_c), s	7.4	15.3	15.3	4.1	24.2	24.2	0.5	0.0	6.1	4.4	0.0	17.4
Prop In Lane	1.00		90:0	1.00		0.13	1.00		0.24	1.00		0.77
Lane Grp Cap(c), veh/h	396	1242	1293	377	1050	1080	103	0	228	244	0	264
V/C Ratio(X)	69.0	0.40	0.40	0.07	0.53	0.53	0.08	0.00	0.40	0.30	0.00	0.86
Avail Cap(c_a), veh/h	573	1242	1293	377	1050	1080	161	0	217	366	0	588
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.54	0.54	0.54	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.5	8.2	8.2	12.0	15.8	15.8	49.3	0.0	52.1	44.8	0.0	53.1
Incr Delay (d2), s/veh	2.1	1.0	6.0	0.2	1.0	1.0	0.3	0.0	1.1	0.7	0.0	7.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.0	5.9	6.1	0.4	6.6	10.2	0.2	0.0	2.8	2.0	0.0	7.8
Unsig. Movement Delay, s/veh										!		
LnGrp Delay(d),s/veh	15.6	9.1	9.1	12.2	16.9	16.9	49.6	0.0	53.3	45.5	0.0	61.0
LnGrp LOS	m	V S	⋖	m	m	2	۵	V S	۵	۵	V S	الد
Approach Dolay, chick		10.5			16.7			650			2,48	
Approach LOS		2.0			20.0			0.00			C./C	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					1			1				
Timer - Assigned Phs	_	2	3	4		9	7	8				
Phs Duration (G+Y+Rc), s	14.1	87.8	10.0	23.1		6.96	2.8	27.3				
Change Period (Y+Rc), s	4.0	0.9	4.0	6.5		0.9	4.5	6.5				
Max Green Setting (Gmax), s	23.0	34.0	15.0	37.5		61.0	5.5	46.5				
Max Q Clear Time (g_c+I1), s	9.4	26.2	6.4	8.1		17.3	2.5	19.4				
Green Ext Time (p_c), s	0.7	4.4	0.1	0.5		8.4	0.0	1.5				
Intersection Summary												
HCM 6th Ctrl Delay			19.4									
HCM 6th LOS			В									

User approved pedestrian interval to be less than phase max green

02/12/2019 CivTech BR

9: Scottsdale Rd & Lincoln Dr Timings Smoke Tree Resort 2020 Total PM Mitigated

	ŀ							١.	ŀ		
	1	†	<u> </u>	\	ļ	•	←	۶	→	•	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	*	4	*-	<u>, , , , , , , , , , , , , , , , , , , </u>	₩.	F	4413	*	444	*	
Traffic Volume (vph)	527	26	446	299	62	427	1624	61	1569	202	
Future Volume (vph)	527	26	446	26	62	427	1624	61	1569	202	
Turn Type	Split	Ν	vo+mq	Split	NA	Prot	NA	Prot	NA	hm+ov	
Protected Phases	4	4	2	∞	∞	2	2	-	9	4	
Permitted Phases			4							9	
Detector Phase	4	4	2	00	∞	വ	2	-	9	4	
Switch Phase											
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	10.0	2.0	10.0	7.0	
Minimum Split (s)	13.0	13.0	13.0	13.0	13.0	13.0	16.7	11.0	16.0	13.0	
Total Split (s)	32.0	32.0	27.0	21.0	21.0	27.0	54.0	23.0	20.0	32.0	
Total Split (%)	24.6%	24.6%	20.8%	16.2%	16.2%	20.8%	41.5%	17.7%	38.5%	24.6%	
Yellow Time (s)	4.0	4.0	4.0	3.6	3.6	4.0	4.7	3.3	4.7	4.0	
All-Red Time (s)	1.5	1.5	1.5	2.0	2.0	1.5	1.0	2.0	1.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	9.9	9.9	5.5	2.7	5.3	5.7	5.5	
Lead/Lag			Lead			Lead	Lag	Lead	Lag		
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	None	None	None	None	C-Max	None	
Act Effct Green (s)	26.4	26.4	48.4	9.3	9.3	22.0	0.59	9.4	20.0	82.1	
Actuated g/C Ratio	0.20	0.20	0.37	0.07	0.07	0.17	0.50	0.07	0.38	0.63	
v/c Ratio	0.95	0.95	0.73	0.49	0.49	0.82	0.73	0.54	0.89	0.51	
Control Delay	101.2	101.1	20.1	9.07	32.6	64.0	29.2	72.5	44.8	0.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	101.2	101.1	20.1	9.07	32.6	64.0	29.2	72.5	44.8	0.6	
TOS	ш	ഥ	ပ	ш	ပ	ш	ပ	ш	Ω	A	
Approach Delay		0.99			43.8		36.3		37.2		
Approach LOS		ш			D		Ω		Q		
Intersection Summary											
Cycle Length: 130											
Actuated Cycle Length: 130											
Offset: 0 (0%), Referenced to phase 6:SBT, Start of Green	phase 6:3	SBT, Sta	rt of Gree	_							
Natural Cycle: 90											
Control Type: Actuated-Coordinated	linated										
Maximum v/c Ratio: 0.95											
Intersection Signal Delay: 42.5	2			ī	Intersection LOS: D	LOS: D					
Intersection Capacity Utilization 83.0%	on 83.0%			೨	U Level o	CU Level of Service E	ш				
Analysis Period (min) 15											

? Splits and Phases: 9: Scottsdale Rd & Lincoln Dr Ø6 (R) 02 50 **€**

02/12/2019 CivTech BR

Smoke Tree Resort 2020 Total PM Mitigated

9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

	•	†	~	\	ţ	4	•	•	•	٠	→	•
Movement	FBI	FRT	FRR	WBI	WRT	WRR	NRI	NRT	NRR	SBI	SRT	SRR
Coo Configurations	, L	-	L L	10 10	4	NO.	NO.	444	NON	700	100	NO.
T-66 Velimigurations	- 1	v :	_ ;	- ز	\$ {	5	בּי	4 t	L	٠,	TTT	
Iranic volume (vervn)	179	20	440	200	70	7/	174	1024	42	- 5	1209	202
Future Volume (Venin)	170	000	440	200	70	7/	174	1024	42	0	6001	cnc
Initial Q (Qb), veh	0 5	0	0 9	0 0	0	0 9	0 0	0	0 ;	0 9	0	0 9
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		9			8			9			8	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	930	0	496	62	69	80	474	1804	20	89	1743	561
Peak Hour Factor	06.0	06.0	06:0	06.0	06:0	06:0	06:0	06.0	06:0	06:0	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	7	2	2	2	2	2	2
Cap, veh/h	726	0	564	120	120	107	526	2276	63	87	1740	863
Arrive On Green	0.07	0.00	0.07	0.07	0.07	0.07	0.15	0.45	0.45	0.05	0.34	0.34
Sat Flow, veh/h	3563	0	1585	1781	1777	1585	3456	5107	141	1781	5106	1585
Grp Volume(v), veh/h	630	0	496	62	69	80	474	1202	652	89	1743	561
Grp Sat Flow(s),veh/h/ln	1781	0	1585	1781	1777	1585	1728	1702	1845	1781	1702	1585
Q Serve(q_s), s	22.8	0.0	26.5	4.4	4.9	6.4	17.5	39.3	39.4	4.9	44.3	32.4
Cycle Q Clear(q_c), s	22.8	0.0	26.5	4.4	4.9	6.4	17.5	39.3	39.4	4.9	44.3	32.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.08	1.00		1.00
Lane Grp Cap(c), veh/h	726	0	264	120	120	107	526	1517	822	87	1740	863
V/C Ratio(X)	0.87	0.00	0.88	0.52	0.58	0.75	06:0	0.79	0.79	0.78	1.00	0.65
Avail Cap(c_a), veh/h	726	0	264	211	210	188	572	1517	822	243	1740	863
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	58.9	0.0	44.8	9.89	28.8	59.5	54.2	30.9	30.9	61.1	42.9	20.9
Incr Delay (d2), s/veh	10.4	0.0	14.3	1.3	1.6	3.9	15.9	2.7	4.9	9.6	22.0	3.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	12.0	0.0	16.8	2.0	2.3	2.7	<u>∞</u>	16.5	18.4	2.4	21.9	19.1
Unsig. Movement Delay, s/veh		d	0	c c			0		L	1		
LnGrp Delay(d),s/veh	69.3	0.0	59.1	29.8	60.4	63.4	0.0/	33.6	35.9	/99	64.8	24.6
LIIGIPLOS	ш	A 7,77	ال	ال	1 F	ш	ال	٥	۵	ال	7 02.00	اد
Approach Vol. Ven/n		9711			7 17			717			2312	
Approach LOS		0. 1.			† L						+ L	
								,				
Timer - Assigned Phs	-	2		4	2	9		∞				
Phs Duration (G+Y+Rc), s	11.7	9.89		32.0	25.3	20.0		14.4				
Change Period (Y+Rc), s	* 5.3	5.7		5.5	5.5	2.7		9.6				
Max Green Setting (Gmax), s	* 18	48.3		26.5	21.5	44.3		15.4				
Max Q Clear Time (g_c+I1), s	6.9	41.4		28.5	19.5	46.3		8.4				
Green Ext Time (p_c) , s	0.0	2.2		0.0	0.3	0.0		0.3				
Intersection Summary												
HCM 6th Cirl Delay			52.1									
HCM 6th LOS												
Notes												

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for furning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Q2/12/2019

CV/Tech BR

Synchro 10 Report Page 10

APPENDIX H

2025 PEAK HOUR ANALYSIS

1: Mockingbird Ln & Lincoln Drive

Smoke Tree Resort 2025 Background AM

1: Mockingbird Ln & Lincoln Drive HCM 6th Signalized Intersection Summary

		1																																					
	_		96	2	ď	8		8		0	2	0	9	0	2	0	2			۵	6	2	5	9	0	9	D	2	D										
→	SBI	ľ	8	8	NA					7.0	33.5	53.0	40.8%	4.0	2.5	0.0	6.5			None	28.9	0.22	0.85	9.09	0.0	90.6		48.5											
۶	SBL	*	83	83	pm+pt	3	00	co		3.5	8.0	0.6	%6.9	3.0	1.0	0.0	4.0	Lead	Yes	None	31.4	0.24	0.30	39.7	0.0	39.7	D											Ω	
←	NBT	2	37	37	NA	4		4		7.0	33.5	44.0	33.8%	4.0	2.5	0.0	6.5	Lag	Yes	None	19.6	0.15	0.23	30.9	0.0	30.9	ပ	32.1	O								LOS: C	ICU Level of Service D	
•	NBL	r	9	9	Perm		4	4		7.0	33.5	44.0	33.8%	4.0	2.5	0.0	6.5	Lag	Yes	None	19.6	0.15	0.09	44.3	0.0	44.3	٥						Green				Intersection LOS: C	U Level o	
ţ	WBT	₩.	696	696	Ϋ́	2		2		15.0	27.0	20.0	38.5%	4.5	1.5	0.0	0.9	Lag	Yes	С-Мах	65.5	0.50	0.63	30.5	0.0	30.5	ပ	30.3	O				., Start of				드	2	
>	WBL	<u>, </u>	24	24	Perm		2	2		15.0	27.0	20.0	38.5%	4.5	1.5	0.0	0.9	Lag	Yes	C-Max	65.5	0.50	0.12	22.8	0.0	22.8	ပ						d 6:EBTL						
†	EBT	₩.	1045	1045	Ϋ́	9		9		15.0	27.0	77.0	59.2%	4.5	1.5	0.0	0.9			C-Max	9.88	0.68	0.50	12.0	0.0	12.0	В	13.7	В				WBTL an						
1	EBL	*	242	242	pm+pt	-	9	-		3.5	8.0	27.0	20.8%	3.0	1.0	0.0	4.0	Lead	Yes	None	9.06	0.70	99.0	21.5	0.0	21.5	S						phase 2:		dinated		4	on 78.5%	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Queue Delay	Total Delay	TOS	Approach Delay	Approach LOS	Intersection Summary	Cycle Length: 130	Actuated Cycle Length: 130	Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green	Natural Cycle: 90	Control Type: Actuated-Coordinated	Maximum v/c Ratio: 0.85	Intersection Signal Delay: 25.4	Intersection Capacity Utilization 78.5%	Analysis Period (min) 15

02/11/2019 CivTech BR

Synchro 10 Report Page 1

	4	†	<i>></i>	>	ţ	4	•	←	•	۶	→	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	jr.	₩		je-	₩		je-	¢\$		<u>, </u>	¢\$	
Traffic Volume (veh/h)	242	1045	33	24	963	46	9	37	23	83	96	253
Future Volume (veh/h)	242	1045	33	24	963	46	9	37	23	83	96	253
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No No			9			9	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	569	1161	37	27	1070	21	7	41	26	92	107	281
Peak Hour Factor	0.00	06:0	0.00	0.00	0.00	0.00	06:0	06:0	06:0	06:0	0.00	0.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	347	2265	72	274	1821	87	88	204	129	332	118	311
Arrive On Green	0.09	0.64	0.64	0.35	0.35	0.35	0.19	0.19	0.19	0.04	0.26	0.26
Sat Flow, veh/h	1781	3515	112	467	3453	165	966	1070	879	1781	456	1198
Grp Volume(v), veh/h	569	287	611	27	220	571	7	0	19	92	0	388
Grp Sat Flow(s),veh/h/ln	1781	1777	1850	467	1777	1841	966	0	1748	1781	0	1655
Q Serve(g_s), s	9.8	22.8	22.8	5.4	32.9	32.9	6.0	0.0	4.2	2.0	0.0	29.5
Cycle Q Clear(g_c), s	9.8	22.8	22.8	13.0	32.9	32.9	21.4	0.0	4.2	2.0	0.0	29.5
Prop In Lane	1.00		90:0	1.00		60:0	1.00		0.39	1.00		0.72
Lane Grp Cap(c), veh/h	347	1145	1192	274	937	971	88	0	333	335	0	429
V/C Ratio(X)	0.78	0.51	0.51	0.10	0.59	0.59	0.08	0.00	0.20	0.27	0.00	0.00
Avail Cap(c_a), veh/h	208	1145	1192	274	937	971	186	0	504	335	0	592
HCM Platoon Ratio	1.00	1.00	1.00	0.67	19.0	19.0	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.55	0.55	0.55	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	20.5	12.3	12.3	26.8	30.5	30.5	61.3	0.0	44.3	39.7	0.0	46.6
Incr Delay (d2), s/veh	4.5	1.6	1.6	0.4	1.5	1.4	0.4	0.0	0.3	0.4	0.0	13.7
Initial O Delay(d3),s/veh	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.4	9.2	9.6	0.7	15.3	15.8	0.2	0.0	1.9	2.4	0.0	13.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	25.0	13.9	13.9	27.2	32.0	31.9	9.19	0.0	44.6	40.1	0.0	60.3
LnGrp LOS	ပ	В	В	ပ	ပ	ပ	Ш	A	О	О	A	Ш
Approach Vol, veh/h		1467			1148			74			480	
Approach Delay, s/veh		15.9			31.8			46.2			56.4	
Approach LOS		В			O			Ω			ш	
Timer - Assigned Phs	-	2	3	4		9		8				
Phs Duration (G+Y+Rc), s	15.2	74.6	0.6	31.2		8.68		40.2				
Change Period (Y+Rc), s	4.0	0.9	4.0	6.5		0.9		6.5				
Max Green Setting (Gmax), s	23.0	44.0	2.0	37.5		71.0		46.5				
Max Q Clear Time (g_c+I1), s	9.01	34.9	7.0	23.4		24.8		31.5				
Green Ext Time (p_c), s	9.0	2.0	0.0	0.2		10.9		2.2				
Intersection Summary												
HCM 6th Ctrl Delay			28.5									
HCM 6th LOS			O									

02/11/2019 CivTech BR

Smoke Tree Resort 2: Quail Run Rd & Lincoln Drive 2025 Background AM

	•	†	>	ţ	-	۶	→	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBL	SBT	
Lane Configurations	r	₩	F	₩	4	F	45	
Traffic Volume (vph)	115	1104	2	927	0	26	0	
Future Volume (vph)	115	1104	2	927	0	26	0	
Turn Type	pm+pt	NA	Perm	NA	N A	Perm	NA	
Protected Phases	7	4		∞	2		9	
Permitted Phases	4		8			9		
Detector Phase	7	4	∞	∞	2	9	9	
Switch Phase								
Minimum Initial (s)	3.5	15.0	15.0	15.0	7.0	7.0	7.0	
Minimum Split (s)	8.0	28.0	28.0	28.0	33.0	33.0	33.0	
Total Split (s)	20.0	94.0	74.0	74.0	36.0	36.0	36.0	
Total Split (%)	15.4%	72.3%	26.9%	26.9%	27.7%	27.7%	27.7%	
Yellow Time (s)	3.0	4.0	4.0	4.0	4.5	4.5	4.5	
All-Red Time (s)	1.0	2.5	2.5	2.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	6.5	6.5	6.5	0.9	0.9	0.9	
Lead/Lag	Lead		Lag	Lag				
Lead-Lag Optimize?	Yes		Yes	Yes				
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	
Act Effct Green (s)	67.4	64.9	20.0	20.0	52.6	52.6	52.6	
Actuated g/C Ratio	0.52	0.50	0.38	0.38	0.40	0.40	0.40	
v/c Ratio	0.54	0.70	0.05	0.77	0.01	0.02	0.00	
Control Delay	28.5	35.5	21.5	38.6	0.0	28.2	0.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	28.5	35.5	21.5	38.6	0.0	28.2	0.2	
FOS	O	۵	S		⋖	S	A	
Approach Delay		34.9		38.6			8.2	
Approach LOS		O		D			A	
Intersection Summary								
Cycle Lenath: 130								
Actuated Cycle Length: 130								
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green	phase 2:1	VBTL an	16:SBTL	Start of	Green			
Natural Cycle: 70								
Control Type: Actuated-Coordinated	linated							
Maximum v/c Ratio: 0.77								
Intersection Signal Delay: 35.2	2			=	Intersection LOS: D	n LOS: D		
Intersection Capacity Utilization 67.1%	on 67.1%			≚	CU Level of Service C	of Servic	e C	
Analysis Period (min) 15								

Splits and Phases: 2: Ouali Run Rd & Lincoln Drive

1 02 (R)

1 048

1 058

1 058

02/11/2019 CivTech BR

Synchro 10 Report Page 3

Smoke Tree Resort 2025 Background AM

2: Quail Run Rd & Lincoln Drive HCM 6th Signalized Intersection Summary

		ì	-	•		,	_	-	_		•	,
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F	₩		r	₩			4		F	2,	
Traffic Volume (veh/h)	115	1104	က	2	927	12	0	0	∞	26	0	99
Future Volume (veh/h)	115	1104	3	2	927	12	0	0	∞	26	0	99
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1:00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	0701	No	0701	0707	NO OF OF	0701	0701	NO OF OF	0701	0701	No	07.01
Adj Sat Flow, verynin	130	1337	0/81	0/81	1020	13	0/81	0/81	0/81	0/81	0/81	18/0
Adj Flow Kale, venin	871	1771	200	7 000	1030	5 00			600	67		2/ 00
Percent Heavy Veh %	0.70	0.40	0.00	0.70	0.00	0.00	0.50	0.50	0.00	0.50	0.70	2.70
Cap, veh/h	208	1582	4	191	1231	16	0	0	743	710	0	743
Arrive On Green	0.12	0.87	0.87	0.34	0.34	0.34	0.00	0.00	0.47	0.47	0.00	0.47
Sat Flow, veh/h	1781	3637	6	453	3594	45	0	0	1585	1406	0	1585
Grp Volume(v), veh/h	128	266	631	2	209	534	0	0	6	29	0	73
Grp Sat Flow(s),veh/h/ln	1781	1777	1869	453	1777	1862	0	0	1585	1406	0	1585
Q Serve(g_s), s	5.9	17.6	17.6	0.4	34.3	34.3	0.0	0.0	0.4	1.5	0.0	3.3
Cycle Q Clear(g_c), s	5.9	17.6	17.6	6.9	34.3	34.3	0.0	0.0	0.4	1.9	0.0	3.3
Prop In Lane	1.00		0.00	1.00		0.02	0.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	208	773	813	191	609	638	0	0	743	710	0	743
V/C Ratio(X)	0.62	0.78	0.78	0.01	0.84	0.84	0.00	0.00	0.01	0.04	0.00	0.10
Avail Cap(c_a), veh/h	317	1196	1258	271	923	796	0 9	0 9	743	710	0 ;	743
HCM Platoon Ratio	5.00	2.00	5.00	00.1	00.1	00.1	00.1	00.1	00:1	8.1	9.1	90.1
Upstream Filter(I)	0.87	0.87	0.87	1.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.1
Uniform Delay (d), siven	78.7	5.9	5.9	32.0	39.4	39.4	0.0	0.0	18.4	18.9	0.0	19.2
Incr Delay (d2), s/ven	5.6	ე.	1.4	0.0	4.3	4.1	0.0	0.0	0.0	0.1	0.0	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOrQ(50%),veh/ln	2.5	5.9	3.1	0.0	15.6	16.3	0:0	0:0	0.5	0.5	0:0	1.3
Unsig. Movement Delay, s/veh		-	-	c	1 0	L C 7	ć	ć	, L	6	c	5
LnGrp Delay(u),s/ven	20°.	4. <	4. <	32.0	43.7	43.5	0.0	0.0	0.0	0.61	0.0	19.5
American Vol. 10km	ر	7 010,1	τ	ر	1045	٥	τ	ξ (٥	٥	2 5	٥
Apploach vol. verm		1338			1043			7 0,			107	
Approach Delay, swen		0.6			43.0			0.0			4.4	
Approach LOS		¥			a			22			22	
Timer - Assigned Phs		2		4		9	7	8				
Phs Duration (G+Y+Rc), s		0.79		63.0		0.79	12.0	51.0				
Change Period (Y+Rc), s		0.9		6.5		0.9	4.0	6.5				
Max Green Setting (Gmax), s		30.0		6.78		30.0	16.0	67.9				
Max Q Clear Time (g_c+II), s		4.7		19.6		5.3	6.7	36.3				
Green Ext Time (p_c), s		0.0		6.11		0.4	0.7	8.7				
Intersection Summary												
HCM 6th Ctrl Delay			24.1									

02/11/2019 CivTech BR

3: Smoke Tree West & Lincoln Dr

Smoke Tree Resort 2025 Background AM

4: Smoke Tree East & Lincoln Dr HCM 6th TWSC

	NBR		0	0	0	Stop	None				06	2	0		632			6.94			3.32	423				423							WBT			
	NBL	>	.0	0		Stop		0	0	0	06	7	0	Minor1	1783		521	6.84	5.84	5.84	3.52	73		261	1	73	1/5			R		⋖	WBL	546		<
	WBT	‡	937	937			None	'	0	0	8	2	1041		C		ľ		ľ			1	1	1		•	1		'				EBR	'		
	WBL	-	0	0		Free		25			06	7	0	Maior	1263		ľ	4.14	ľ		2.22	246	1	1	i	246			'	WB			EBT	'	ľ	
	EBR		2	2	0	Free	None	•	•		8	7	.7		c		ľ		1	•		1	1	1		1	1		'				NBLn1			•
0	EBT	₹	1135	1135	0	Free	1			0	06	2	1261	Maior1	С		ľ	1	,	•	•	•	'	1		•	1			H						
Int Delay, s/veh	Movement	Lane Configurations	Traffic Vol, veh/h	Future Vol, veh/h	Conflicting Peds, #/hr	Sign Control	RT Channelized	Storage Length	Veh in Median Storage, #	Grade, %	Peak Hour Factor	Heavy Vehicles, %	Mvmt Flow	Major/Minor	low All	Stage 1	Stage 2	Critical Hdwy	Critical Holwy Stg 1	Critical Hdwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Stage 2	Platoon blocked, %	Mov Cap-1 Maneuver	Mov Cap-2 Maneuver	Stage 1	z afge z	Annroach	HCM Control Delay, s	HCM LOS	Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	(a) real Dates (b)

Movement							
MOVELLICITE	FRT	FRD	MPI	WRT	aN	dan	
	EDI	EDR	WDL	MDI	NDL	VDR	
Lane Configurations	*		r	ŧ	>		
Traffic Vol, veh/h	1137	0	_	934	9	2	
Future Vol, veh/h	1137	0	-	934	9	2	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	•	None		- None		None	
Storage Length		٠	22	٠	0		
Veh in Median Storage, #	0 # '	1	1	0	0		
Grade, %	0	•	•	0	0		
Peak Hour Factor	8	06	8	06	8	06	
Heavy Vehicles, %	2	7	2	2	7	2	
Mvmt Flow	1263	0		1038	7	2	
Major/Minor N	Major1	2	Major2	2	Minor1		
Conflicting Flow All	0	0	0 1263	0	0 1784	632	
Stage 1		•			1263		
Stage 2	,	,		'	521		
Critical Hdwy	•	٠	4.14	•	6.84	6.94	
Critical Hdwy Stg 1					5.84		
Critical Hdwy Stg 2	1	1	1	1	5.84		
Follow-up Hdwy		٠	2.22	٠	3.52	3.32	
Pot Cap-1 Maneuver	1	1	546	1	73	423	
Stage 1		•	,	•	230		
Stage 2	•	•	•	٠	261		
Platoon blocked, %	٠	٠		٠			
Mov Cap-1 Maneuver	1	1	246	•	73	423	
Mov Cap-2 Maneuver	٠		٠	٠	175		
Stage 1	1	1	1	•	230		
Stage 2	1	1	1	1	261		
Approach	EB		WB		NB		
HCM Control Delay, s	0		0		23.4		
HCM LOS					O		
Minor Long/Major Mam		NDI 21	FDT	LDD	Id/W	±d/v	
MILIOI Laiteriviajoi iviviii.		I DELIII	EDI	EDK	WDL	VBI	
Capacity (vervn)		202			240		
HCM Lane V/C Ratio		0.043	١	١	0.002		
HCM Control Delay (s)		23.4	•	•	11.6		
HCM Lane LOS							

Synchro 10 Report Page 6

02/11/2019 CivTech BR

Synchro 10 Report Page 5

02/11/2019 CivTech BR

ZC SC

ш	Y
West & Lincoln [JCM 6th TW
∞ಶ	_
West	
Medical	
Lincoln	
5: -	

mersection							
int Delay, síveh	0.4						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	₹		F	‡	>		
	1122	18	42	928	9	6	
	1122	18	42	928	9	6	
eds, #/hr	0	0	0	0	0	0	
	Free	Free Free	Free	Free	Stop	Stop	
RT Channelized	•	None		None	•	None	
Storage Length	•	•	25	•	0	,	
Veh in Median Storage, #	0 #	1	1	0	0	ì	
Grade, %	0			0	0		
Peak Hour Factor	06	8	06	8	06	8	
cles, %	7	2		2	2	7	
Wwmt Flow	1247	2	47	1031	7	10	
		•	-	•	,		
	MajorT	-	Major2	-	MinorT		
Conflicting Flow All	0	0	0 1267	0	1867	634	
Stage 1	1	•	1	•	1257		
Stage 2	٠	'	•	'	910		
Critical Hdwy	1	1	4.14	1	6.84	6.94	
Critical Hdwy Stg 1	٠	•		•	5.84		
Critical Hdwy Stg 2	1	•	1	•	5.84		
ollow-up Hdwy	٠		2.22		3.52	3.32	
Pot Cap-1 Maneuver	•	•	544	•	64	422	
Stage 1	•	1		1	231		
Stage 2	•	•		•	202		
Platoon blocked, %	•	١		١			
Mov Cap-1 Maneuver	1	•	544	•	28	422	
Mov Cap-2 Maneuver	٠				154		
Stage 1	•	•		•	211		
Stage 2	1	•	1	•	202		
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.5		20.5		
HCM LOS					S		
Minor Lane/Major Mvmt	_	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		249	1	•	544		
HCM Lane V/C Ratio		0.067			980.0		
HCM Control Delay (s)		20.5			12.2		
HCM Lane LOS		O	•	•	В		
HCM 95th %tile Q(veh)		0.2	1	•	0.3	٠	

Synchro 10 Report Page 7

02/11/2019 CivTech BR

Smoke Tree Resort 2025 Background AM

6: Lincoln Medical East & Lincoln Dr

Movement Lane Configurations Traffic Vol. veh/h	-						
	EBT	EBR	WBL	WBT	NBL	NBR	
	₽		F	\$	2		
	1118	=	9	026	0	6	
Future Vol, veh/h 1	1118	Ξ	9	970	0	6	
Conflicting Peds, #/hr	0	0	0	0		0	
	Free	Free	Free	Free	Stop	Stop	
RT Channelized	1	None	1	None	1	None	
Storage Length	•	•	25	•	0		
Veh in Median Storage, #	0	1	•	0	0		
Grade, %	0	٠	٠	0	0		
Peak Hour Factor	8	06	8	06	8	06	
cles, %	2	2	2	2	2	2	
Mvmt Flow 1;	1242	12	7	1078	0	10	
	Major1	Σ	Major2	Σ	Minor1		
Conflicting Flow All	0	0	0 1254	0	1801	627	
Stage 1	٠	٠	٠	٠	1248		
Stage 2				,	223		
Critical Hdwy	٠	٠	4.14	٠	6.84	6.94	
Critical Hdwy Stg 1	٠	٠	٠	٠	5.84		
Critical Hdwy Stg 2	1	•	1	٠	5.84		
Follow-up Hdwy	٠	٠	2.22	٠	3.52	3.32	
Pot Cap-1 Maneuver	٠	•	221	٠	71	426	
Stage 1	•	٠	•	٠	234		
Stage 2	•	•	•	•	240		
Platoon blocked, %	٠	٠		٠			
Mov Cap-1 Maneuver	1	•	221	•	2	426	
Mov Cap-2 Maneuver	٠	1	•	٠	173		
Stage 1	•	1	•	1	231		
Stage 2	٠	٠	•	٠	240		
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.1		13.7		
HCM LOS					В		
Minor Lane/Major Mvmt	Z	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		426			551		
HCM Lane V/C Ratio	ľ	0.023		•	0.012		
HCM Control Delay (s)		13.7		٠	11.6		
HCM Lane LOS		В		٠	В		
HCM 95th %tile O(veh)		0 1	٠	٠	C		

Synchro 10 Report Page 8 02/11/2019 CivTech BR

Smoke Tree Resort

7: Apartment Drwy & Lincoln Dr

Smoke Tree Resort 2025 Background AM

8: AJ's Drwy & Lincoln Dr HCM 6th TWSC

Stop

Stop

Stop 0

Stop 46 46 0

Stop

Free

Free

Free

None

25

Traffic Vol, veh/h 3 1
Future Vol, veh/h 3 1
Conflicting Peds,#/hr 0
Sign Control Free 1
Sign Control 2
Storage Length 25
Grade, % 6
Grade, % 7
Heavy Vehicles, % 2
Mwnt Fow 3 1

4000

918 918 0 Free

48 48 0 Free

990

1040

1.3

nt Delay, s/veh

8 2

9 2 9

0 0

06 51

0 0 8 0 0

06

8 70

06

1020 0 8

53

2

3 1156

6.94

6.94

- 4.14

4.14

Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2

Minor2 1715 1715 584 7.54 6.54 6.54

2360 11131 1229 6.54 5.54 5.54 4.02 35 277 248

2332 11196 11136 6.54 5.54 5.54 4.02 36 258 275

11196 617 7.54 6.54 6.54 3.52 49 198

3.32

3.32

2.22

2.22 670

Follow-up Hdwy Pot Cap-1 Maneuver

Stage 1

3.52 58 217 465

505

47 47 216 409

436

43 43 197 388

999

Mov Cap-2 Maneuver Stage 1 Stage 2

32 32 251 247

32 32 257 249

SB 33.2 D

NB 30.7

WB 0.6

EB

Approach HCM Control Delay, s

HCM LOS

515

612

Major2 1223

0

0

Major1 1030

Major/Minor Conflicting Flow All Stage 1

ntersection													
nt Delay, síveh	16.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
-ane Configurations	F	₩.		*	4₽			4		*		ĸ.	
raffic Vol, veh/h	29	1062	38	70	905	=	29	0	33	9	0	14	
Future Vol, veh/h	59	1062	38	70	902	Ξ	26	0	33	9	0	14	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	1	1	None	1	1	None	1	1	None	ì	1	None	
Storage Length	25			22		•	٠	٠	٠	0	٠	0	
Veh in Median Storage,	- #	0			0		•	0	•	•	0		
Grade, %	٠	0	•	•	0	٠	٠	0	٠	٠	0		
Peak Hour Factor	06	8	06	8	06	8	06	8	8	06	8	06	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	7	2	
Mvmt Flow	32	1180	42	22	1006	12	62	0	37	7	0	16	
Major/Minor M	Major1		_	Major2		2	Minor1		2	Minor2			
low All	1018	0	0	1222	0	0	1812	2327	611	1710	١.	509	
Stage 1	٠	٠				1	1265	1265	1	1056			
Stage 2			ľ	ľ	ľ		547	1062	٠	654			
Critical Hdwy	4.14	1	1	4.14	1	1	7.54	6.54	6.94	7.54	1	6.94	
Critical Hdwy Stg 1						٠	6.54	5.54		6.54	1		
Critical Hdwy Stg 2	•	•				٠	6.54	5.54	٠	6.54	•		
Follow-up Hdwy	2.22			2.22		٠	3.52	4.02	3.32	3.52	٠	3.32	
Pot Cap-1 Maneuver	119	•	•	299	•	•	~ 49	37	437	26	0	206	
Stage 1	٠	•	•	•	•	•	179	239	٠	241	0		
Stage 2	•	1	1	1	1	1	489	298	1	422	0		
Platoon blocked, %		•	•		•	•							
Mov Cap-1 Maneuver	119	1		200		•	~ 44	34	437	21	1	206	
Mov Cap-2 Maneuver	•	•	•	•	•	1	~ 44	34	1	21	•		
Stage 1	1	•	1	1	1	•	171	228	•	230	1		
Stage 2	•	1	•	•	•	1	456	286	•	368	•		
Approach	EB			WB			B			SB			
HCM Control Delay, s	0.3			0.2		↔	\$ 393.8			34.4			
HCM LOS							ш			٥			
		į	i	i						i			
Minor Lane/Major Mvmt		NBLn1	EBL	EBI	EBR	WBL	WBT	WBRS	WBR SBLn1 SBLn2	BLn2			
Capacity (veh/h)		99	119	•	•	299	1	1	21	200			
HCM Lane V/C Ratio			\sim	•	•	0.039		•		0.031			
HCM Control Delay (s)	€>	\$ 393.8	10.6	•	•	11.6	•	1	85.9	12.3			
HCM Lane LOS			ď			0							
			د			В	•	•	_	В			

*: All major volume ir

+: Computation Not Defined

\$: Delay exceeds 300s

Volume exceeds capacity

02/11/2019 CivTech BR

- 47 505 - 0.118 0.031 - 91.6 12.4 - F B - 0.4 0.1

- 566 - 0.094 - 12 - B - 0.3

198 670 0.297 0.005 30.7 10.4

0 B

1.2

HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)

WBR SBLn1 SBLn2

WBT

WBL

EBR

EBT

EBL NBLn1

Synchro 10 Report Page 10 CivTech BR

9: Scottsdale Rd & Lincoln Dr Timings Smoke Tree Resort 2025 Background AM

	4	†	<i>></i>	\	ţ	•	•	۶	→	•	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	*	4	×.		*	1	4413	*	444	æ	
Traffic Volume (vph)	489	42	499	41	36	319	1429	22	1814	652	
Future Volume (vph)	489	42	466		36	319	1429	22	1814	652	
Turn Type	Split	NA	vo+mq	Split	Ν	Prot	NA	Prot	A	vo+mq	
Protected Phases	4	4	2	∞	∞	2	2	-	9	4	
Permitted Phases			4							9	
Detector Phase	4	4	വ	∞	00	2	2	-	9	4	
Switch Phase											
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	10.0	2.0	10.0	7.0	
Minimum Split (s)	13.0	13.0	13.0	13.0	13.0	13.0	16.7	11.0	16.0	13.0	
Total Split (s)	30.0	30.0	30.0	13.0	13.0	30.0	73.0	14.0	57.0	30.0	
Total Split (%)	23.1%	23.1%	23.1%	10.0%	10.0%	23.1%	56.2%	10.8%	43.8%	23.1%	
Yellow Time (s)	4.0	4.0	4.0	3.6	3.6	4.0	4.7	3.3	4.7	4.0	
All-Red Time (s)	1.5	1.5	1.5	2.0	2.0	1.5	1.0	2.0	1.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	9.9	9.9	5.5	2.7	5.3	5.7	5.5	
Lead/Lag			Lead			Lead	Lag	Lead	Lag		
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	None	None	None	None	C-Max	None	
Act Effct Green (s)	24.3	24.3	44.8	7.2	7.2	20.5	7.07	7.7	929	92.9	
Actuated g/C Ratio	0.19	0.19	0.34	90.0	90:0	0.16	0.54	90:0	0.43	99.0	
v/c Ratio	0.94	0.94	0.94	0.47	0.43	0.65	0.59	0.59	0.93	99.0	
Control Delay	88.8	88.7	50.9	75.4	33.9	26.8	21.7	81.5	44.4	13.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	88.8	88.7	20.9	75.4	33.9	26.8	21.7	81.5	44.4	13.7	
TOS	ı	ш.	Ω	ш	ပ	ш	S	ш	Ω	В	
Approach Delay		70.4			46.9		27.9		37.3		
Approach LOS		ш			Q		O		Q		
Intersection Summary											
Cycle Length: 130											
Actuated Cycle Length: 130											
Offset: 0 (0%), Referenced to phase 6:SBT, Start of Green	phase 6:	SBT, Sta	rt of Gree	_							
Natural Cycle: 90											
Control Type: Actuated-Coordinated	dinated										
Maximum v/c Ratio: 0.94											
Intersection Signal Delay: 40.7	7			⊒	Intersection LOS: D	LOS: D					
Intersection Capacity Utilization 85.8%	on 85.8%			2	U Level o	CU Level of Service E	ш				
Analysis Period (min) 15											

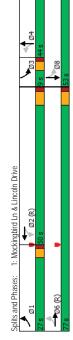
₹ Splits and Phases: 9: Scottsdale Rd & Lincoln Dr ▼ Ø6 (R) \$Ø **₹**

02/11/2019 CivTech BR

Smoke Tree Resort 2025 Background AM

9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

Movement EB1 EB1 WB1										D			
FBL FBF FBF WBL WBF WBL WBF NBL WBF		•	†	<u> </u>	/	ļ	4	•	←	•	۶	→	•
100 100	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
489 42 499 41 39 52 319 1429 43 55 1814 489 42 499 41 39 52 319 1429 43 55 1814 100 1.00 0 0 0 0 0 0 0 0 0 0 0 0 1.00 1.00	Lane Configurations	*	4	¥.	r	₩		K	4413		F	444	×.
489 42 499 41 39 52 319 1429 43 55 1814 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 277 0 554 46 43 58 354 1588 48 61 2016 2	Traffic Volume (veh/h)	489	42	466	41	39	52	319	1429	43	55	1814	652
100	Future Volume (veh/h)	489	42	466	41	39	52	319	1429	43	22	1814	652
100	Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
100	Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
No	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1870 1870	Work Zone On Approach		8			8			8			8	
577 0 554 46 43 58 384 1588 48 61 2016 0.90	Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
0.09 0.90 0.90 0.90 0.90 0.90 0.90 0.90	Adj Flow Rate, veh/h	277	0	224	46	43	28	354	1588	48	61	2016	724
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Peak Hour Factor	0.90	0.00	0.00	0.00	0.00	0.00	06:0	06:0	06:0	06:0	0.90	0.90
671 0 489 95 95 85 414 2404 73 78 2015 606 000 006 005 005 0012 047 047 047 039 8563 0 1885 1781 1777 1885 3456 5093 154 1781 5106 577 0 554 46 43 58 354 1061 575 61 2016 7181 0 1885 1781 1777 1885 1728 1702 1843 1781 1702 209 0.0 245 3.3 3.1 4.7 13.1 31.1 31.1 4.4 51.3 209 0.0 245 3.3 3.1 4.7 13.1 31.1 31.1 4.4 51.3 209 0.0 245 8.3 3.1 4.7 13.1 31.1 31.1 4.4 51.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
0.06 0.00 0.06 0.05 0.05 0.05 0.12 0.47 0.47 0.09 0.39 0.356 0.10 0.47 0.04 0.39 0.356 0.10 0.1855 1781 1777 1585 3456 5093 154 1781 1702 0.185 1781 1777 1585 1728 1702 1843 1781 1702 0.20 0.0 24.5 3.3 3.1 4.7 13.1 31.1 31.1 4.4 51.3 2.0 0.0 24.5 3.3 3.1 4.7 13.1 31.1 31.1 4.4 51.3 0.0 0.0 0.24.5 3.3 3.1 4.7 13.1 31.1 31.1 4.4 51.3 0.0 0.0 0.0 1.00 0.0 0.0 0.0 0.0 0.0 0.	Cap, veh/h	671	0	489	96	96	82	414	2404	73	78	2015	924
3563 0 1885 1781 1777 1885 3456 5093 154 1781 5106 7170 1885 1781 1772 1885 1781 1702 1843 1781 1702 1843 1781 1702 1843 1781 1702 1843 1702 1844 51:3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Arrive On Green	90:0	0.00	90:0	0.02	0.05	0.05	0.12	0.47	0.47	0.04	0.39	0.39
1781 277 0 554 46 43 58 384 1061 575 61 2016 1781 1782 1702 1843 1781 1702 1702 1843 1702 1843 1702 1843 1702 1843 1702 1843 1702 1843 1703 1702 1843 1703 1	Sat Flow, veh/h	3563	0	1585	1781	1777	1585	3456	5093	154	1781	5106	1585
1781	Grp Volume(v), veh/h	217	0	554	46	43	28	354	1061	575	19	2016	724
209 0.0 245 3.3 3.1 4.7 13.1 31.1 44 513 209 0.0 246 3.3 3.1 4.7 13.1 31.1 44 513 1.00 6.71 0 489 95 95 85 414 1607 870 78 2015 0.86 0.00 1.13 0.48 0.45 0.68 0.66 0.66 0.66 0.76 0.73 0.3 0.3 1.00 1.00 1.00 1.00 1.00 1.00	Grp Sat Flow(s),veh/h/ln	1781	0	1585	1781	1777	1585	1728	1702	1843	1781	1702	1585
100	Q Serve(g_s), s	20.9	0.0	24.5	3.3	3.1	4.7	13.1	31.1	31.1	4.4	51.3	45.6
100 100 100 100 100 100 100 100 100 100	Cycle Q Clear(g_c), s	50.9	0.0	24.5	3.3	3.1	4.7	13.1	31.1	31.1	4.4	51.3	45.6
671 0 489 95 95 88 444 1607 870 78 2015 0.86 0.00 1.13 0.48 0.45 0.68 0.66 0.66 0.66 0.78 1.00 0.33 0.33 0.33 1.00 1.00 1.00 1.00 1.00	Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.08	1.00		1.00
086 0.00 113 0.48 0.45 0.68 0.86 0.66 0.66 0.78 1.00 0.33 0.33 0.33 0.33 0.33 0.33 0.30 0.30	Lane Grp Cap(c), veh/h	671	0	489	95	95	82	414	1607	870	78	2015	924
671 0 489 101 101 90 661 1762 954 119 2015 0.33 0.33 0.33 1.00 1.00 1.00 1.00 1.00	V/C Ratio(X)	98.0	0.00	1.13	0.48	0.45	89.0	98.0	99.0	99.0	0.78	1.00	0.78
0.33 0.33 0.33 1.00 1.00 1.00 1.00 1.00	Avail Cap(c_a), veh/h	671	0	489	101	101	06	651	1762	954	119	2015	924
1,00 0,00 1,00 1,00 1,00 1,00 1,00 1,00	HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
593 0.0 508 598 597 604 561 263 263 615 393 104 0.0 830 1.4 1.2 142 39 0.6 1.1 7.7 202 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
104 0.0 83.0 1.4 1.2 14.2 3.9 0.6 1.1 77 20.2 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Uniform Delay (d), s/veh	59.3	0.0	20.8	29.8	29.7	60.4	56.1	26.3	26.3	61.5	39.3	20.8
00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Incr Delay (d2), s/veh	10.4	0.0	83.0	1.4	1.2	14.2	3.9	9.0	1.1	7.7	20.2	9.9
110 0.0 26.4 1.5 1.4 2.2 5.9 126 138 2.2 248 weh 69.7 0.0 133.7 61.2 60.9 74.7 60.0 26.9 27.4 69.2 59.5 E A F E E E C C E F F 1131 147 1990 2801 101.0 66.4 32.9 27.9 2801 11.0 67.1 30.0 21.1 57.0 12.6 11.0 67.1 30.0 21.1 57.0 12.6 12.5 3.5 5.5 5.7 5.6 12.6 3.3 24.5 51.3 7.4 12.7 5.6 5.7 5.6 13.8 24.5 51.3 6.7 14.9 0 0.5 0.0 0.0 15.0 0.5 0.0 0.0 16.0 0.5 0.0 0.0 17.0 0.0 0.0 0.0 18.0 0.0 0.0 0.0 18.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
697 0.0 1337 61.2 60.9 74.7 60.0 26.9 27.4 69.2 59.5 F A F E E C C E F 101.0 66.4 32.9 51.4 51.4 51.4 51.4 1 E E C C E F D 11.0 67.1 30.0 21.1 57.0 12.6 D D *5.3 5.7 5.5 5.5 5.7 5.6 7 A A 5.6 A A A A A A A A A A B A B B A B A B A B B A B <td< td=""><td>%ile BackOfQ(50%),veh/ln</td><td>11.0</td><td>0.0</td><td>26.4</td><td>1.5</td><td>1.4</td><td>2.2</td><td>5.9</td><td>12.6</td><td>13.8</td><td>2.2</td><td>24.8</td><td>25.7</td></td<>	%ile BackOfQ(50%),veh/ln	11.0	0.0	26.4	1.5	1.4	2.2	5.9	12.6	13.8	2.2	24.8	25.7
No. 1 No. 1 No. 1 No. 1 No. 2 No.	Unsig. Movement Delay, s/veh	,	ć	1 22 7		0	L 7 L		2		0	L C	100
1131 147 1990 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lifeip Delay(u),s/veri	09.7	0.0	133.7	2.10	600.9	74.7	00.00	70.9	4.12	2.40	0.4.0	4.12
10.0 66.4 32.9 F E C C 1.1 2 4 5 6 8 11.0 67.1 30.0 21.1 57.0 12.6 6.4 33.1 24.5 24.5 51.3 7.4 6.4 33.1 26.5 15.1 53.3 6.7 55.0 0.0 0.5 0.0 0.0 D	Annroach Vol. veh/h	1	1131	-	ı	147	ı	ı	1000		ı	2801	
1 2 4 5 6 8 11.0 67.1 30.0 21.1 57.0 12.6 • 5.3 5.7 25.5 5.5 5.7 5.6 6.4 33.1 26.5 15.1 53.3 6.7 0.0 2.5 0.0 0.5 0.0 0.0	Approach Delay, skeh		101.0			66.4			32.9			51.4	
11.0 67.1 30.0 21.1 57.0 7.5.3 5.7 5.5 5.5 5.5 5.7 6.7 8.7 64.3 3.1 26.5 15.1 53.3 0.0 2.5 0.0 0.5 0.0 5.5 0.0	Approach LOS		ш			ш			ပ			Ω	
11.0 67.1 30.0 21.1 57.0 5.3 5.7 5.5 5.5 5.7 5.7 67.3 24.5 51.3 6.0 2.5 0.0 0.5 0.0 5.5 0.	Timer - Assigned Phs	•	2		4	rc.	9		œ				
*5.3 5.7 5.5 5.5 5.7 *8.7 67.3 24.5 24.5 51.3 6.4 33.1 26.5 15.1 53.3 0.0 2.5 0.0 0.5 0.0 55.0 D	Phs Duration (G+Y+Rc), s	11.0	67.1		30.0	21.1	57.0		12.6				
*8.7 67.3 24.5 24.5 51.3 6.4 33.1 26.5 15.1 53.3 0.0 2.5 0.0 0.5 0.0 55.0	Change Period (Y+Rc), s	* 5.3	5.7		5.5	5.5	5.7		9.9				
6.4 33.1 26.5 15.1 53.3 0.0 2.5 0.0 0.5 0.0 55.0 D	Max Green Setting (Gmax), s	* 8.7	67.3		24.5	24.5	51.3		7.4				
c), s 0.0 2.5 0.0 0.5 0.0 iry 55.0 D	Max Q Clear Time (g_c+I1), s	6.4	33.1		26.5	15.1	53.3		6.7				
ıry	Green Ext Time (p_c), s	0.0	2.5		0.0	0.5	0.0		0.0				
	Intersection Summary												
	HCM 6th Ctrl Delay			55.0									
Notes	HCM 6th LOS			D									


Synchro 10 Report Page 11

Synchro 10 Report Page 12 Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for furning movement.
*HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

02/11/2019
CVTech BR

1: Mockingbird Ln & Lincoln Drive

→	SBT	43	25	25	NA	∞		œ		7.0	33.5	53.0	40.8%	4.0	2.5	0.0	6.5			None	18.9	0.15	69.0	31.4	0.0	31.4	ပ	36.1	O										
۶	SBL	*	19	19	pm+pt	e	∞	co		3.5	8.0	0.6	%6.9	3.0	1.0	0.0	4.0	Lead	Yes	None	21.4	0.16	0.40	51.7	0.0	51.7	۵											U	
←	NBT	\$	89	89	NA	4		4		7.0	33.5	44.0	33.8%	4.0	2.5	0.0	6.5	Lag	Yes	None	11.7	0.09	0.57	62.3	0.0	62.3	ш	61.7	ш								LOS: B	CU Level of Service C	
•	NBL	<u>, </u>	∞	∞	Perm		4	4		7.0	33.5	44.0	33.8%	4.0	2.5	0.0	6.5	Lag	Yes	None	11.7	0.09	0.12	55.8	0.0	22.8	ш						Green				Intersection LOS: B	:U Level	
ţ	WBT	₩	1011	1011	NA	2		2		15.0	27.0	20.0	38.5%	4.5	1.5	0.0	0.9	Lag	Yes	С-Мах	73.6	0.57	09.0	22.4	0.0	22.4	S	22.1	ပ				., Start of				드	⊇	
>	WBL	*	25	22	Perm		2	2		15.0	27.0	20.0	38.5%	4.5	1.5	0.0	0.9	Lag	Yes	C-Max	73.6	0.57	0.10	12.1	0.0	12.1	В						nd 6:EBTI						
†	EBT	*	945	945	NA	9		9		15.0	27.0	77.0	59.2%	4.5	1.5	0.0	0.9			C-Max	98.6	0.76	0.41	9.9	0.0	9.9	A	9.2	A				WBTL ar						
1	EBL	<i>K</i>	267	267	pm+pt	-	9	-		3.5	8.0	27.0	20.8%	3.0	1.0	0.0	4.0	Lead	Yes	None	100.6	0.77	99.0	18.8	0.0	18.8	В						phase 2:		dinated		- -	on 71.8%	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Queue Delay	Total Delay	LOS	Approach Delay	Approach LOS	Intersection Summary	Cycle Length: 130	Actuated Cycle Length: 130	Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green	Natural Cycle: 90	Control Type: Actuated-Coordinated	Maximum v/c Ratio: 0.69	Intersection Signal Delay: 19.1	Intersection Capacity Utilization 71.8%	Analysis Period (min) 15

02/11/2019 CivTech BR

Synchro 10 Report Page 1

Smoke Tree Resort 2025 Background PM

1: Mockingbird Ln & Lincoln Drive HCM 6th Signalized Intersection Summary

	4	†	<i>></i>	>	ţ	4	•	←	•	۶	→	•
Movement	EBF	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F	₽		r	₽ ₽		r	£\$		r	2	
Traffic Volume (veh/h)	267	945	32	25	1011	89	- ∞	89	19	19	25	169
Future Volume (veh/h)	267	945	32	25	1011	89	∞	89	19	29	25	169
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	010	No	0101	0101	No	0101	0101	No	0101	0101	No	0101
Adj sat Flow, verynyn	18/0	1070	0/81	0/81	1400	0/81	0/81	18/0	18/0	18/0	0/81	100
Adj Flow Kale, Venin Boat Lour Eactor	167	000	30	87	000	0/0	600	0/0	17	44	200	88 6
Percent Heavy Veh %	0.70	0.40	0.70	0.40	0.70	0.70	0.90	0.70	0.70	0.70	0.70	0.30
Cap, veh/h	397	2562	88	375	2101	142	87	146	40	192	2	217
Arrive On Green	0.08	0.73	0.73	0.62	0.62	0.62	0.10	0.10	0.10	0.04	0.17	0.17
Sat Flow, veh/h	1781	3505	120	519	3378	228	1134	1410	390	1781	388	1257
Grp Volume(v), veh/h	297	532	554	28	260	609	6	0	16	74	0	246
Grp Sat Flow(s),veh/h/ln	1781	1777	1849	519	1777	1829	1134	0	1800	1781	0	1644
Q Serve(g_s), s	7.4	15.0	15.0	2.8	24.5	24.5	1.0	0.0	9.9	4.7	0.0	18.9
Cycle Q Clear(g_c), s	7.4	15.0	15.0	3.7	24.5	24.5	10.9	0.0	9.9	4.7	0.0	18.9
Prop In Lane	1.00		0.07	1.00		0.12	1.00		0.22	1.00		0.76
Lane Grp Cap(c), veh/h	397	1299	1351	375	1105	1138	87	0	187	192	0	284
V/C Ratio(X)	0.75	0.41	0.41	0.07	0.53	0.53	0.10	0.00	0.52	0.38	0.00	0.86
Avail Cap(c_a), veh/h	573	1299	1351	375	1105	1138	296	0	519	192	0	588
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.54	0.54	0.54	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.7	6.7	6.7	10.1	13.9	13.9	62.0	0.0	55.2	48.4	0:0	52.3
Incr Delay (d2), s/veh	3.2	1.0	6.0	0.2	1.0	1.0	0.5	0.0	2.2	1.3	0.0	7.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0:0	0.0
%ile BackOfQ(50%),veh/ln	4.0	5.5	2.7	0.3	9.8	10.1	0.3	0.0	3.1	2.2	0.0	8.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	17.0	7.7	7.6	10.4	14.9	14.9	62.5	0.0	57.4	49.7	0.0	0.09
LnGrp LOS	В	A	⋖	m	m	В	ш	V	ш	۵	A	Ш
Approach Vol, veh/h		1383			1227			106			320	
Approach Delay, s/veh		6.7			14.8			57.8			97.6	
Approach LOS		A			В			ш			ш	
Timer - Assigned Phs	-	2	က	4		9		∞				
Phs Duration (G+Y+Rc), s	14.1	86.9	0.6	20.0		101.0		29.0				
Change Period (Y+Rc), s	4.0	0.9	4.0	6.5		0.9		6.5				
Max Green Setting (Gmax), s	23.0	44.0	2.0	37.5		71.0		46.5				
Max Q Clear Time (g_c+I1), s	9.4	26.5	6.7	12.9		17.0		20.9				
Green Ext Time (p_c), s	0.7	8.1	0.0	0.5		9.5		1.6				
Intersection Summary												
HCM 6th Ctrl Delay			18.5									
HCM 6th LOS			В									

02/11/2019 CivTech BR

Smoke Tree Resort 2: Quail Run Rd & Lincoln Drive 2025 Background PM

→	SBT	¢\$.0	0	NA	9		9		7.0	33.0	36.0	27.7%	4.5	1.5	0.0	0.9			C-Max	49.0	0.38	0.14	0.4	0.0	0.4	А	4.5	A							4	ntersection LOS: C CUT evel of Service B	
٠	SBL	r	14	14	Perm		9	9		7.0	33.0	36.0	27.7%	4.5	1.5	0.0	0.9			C-Max	49.0	0.38	0.03	30.9	0.0	30.9	S						Green				Intersection LOS: C	
←	NBT	4	0	0	NA	2		2		7.0	33.0	36.0	27.7%	4.5	1.5	0.0	0.9			C-Max	49.0	0.38	0.00	0.0	0.0	0.0	V						, Start of				⊆ ⊆	2
¥	WBT	₩	1008	1008	Ν	00		00		15.0	28.0	74.0	26.9%	4.0	2.5	0.0	9.9	Lag	Yes	None	54.4	0.42	0.78	36.1	0.0	36.1	O	36.1					d 6:SBTL					
†	EBT	₩	696	696	Ν	4		4		15.0	28.0	94.0	72.3%	4.0	2.5	0.0	9.9			None	68.5	0.53	0.57	34.6	0.0	34.6	S	34.2	O				:NBTL an					
1	EBL	*	82	82	pm+pt	7	4	7		3.5	8.0	20.0	15.4%	3.0	1.0	0.0	4.0	Lead	Yes	None	71.0	0.55	0.43	28.9	0.0	28.9	S						o phase 2		rdinated		3.6 Ilon 62.4%	7.77
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Queue Delay	Total Delay	SOT	Approach Delay	Approach LOS	Intersection Summary	Cycle Lenath: 130	Actuated Cycle Length: 130	Offset 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green	Natural Cycle: 70	Control Type: Actuated-Coordinated	Maximum v/c Ratio: 0.78	Intersection Signal Delay: 33.6 Intersection Capacity Utilization 62.4%	Analysis Period (min) 15

Spills and Phases: 2: Oual Run Rd & Uncoin Drive

02/11/2019 Synchro 10 Report CivTech BR Page 3

Smoke Tree Resort 2025 Background PM

2: Quail Run Rd & Lincoln Drive HCM 6th Signalized Intersection Summary

	\	Ť	-	•	,	/	1	-	_	٠	+	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F	+		r	+			4		F	23	
Traffic Volume (veh/h)	82	963		0	1008	25	0	0	2	14	0	93
Future Volume (veh/h)	82	963	τ-	0	1008	25	0	0	2	14	0	93
nitial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			9N			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	94	1070	-	0	1120	28	0	0	2	16	0	103
Peak Hour Factor	0.00	0.00	06:0	0.00	0.00	06:0	06:0	06:0	06:0	06:0	06:0	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	180	1645	2	22	1326	33	0	0	717	969	0	717
Arrive On Green	0.09	0.00	06:0	0.00	0.37	0.37	0.00	0.00	0.45	0.45	0.00	0.45
Sat Flow, veh/h	1781	3643	3	527	3543	86	0	0	1585	1415	0	1585
Grp Volume(v), veh/h	94	522	549	0	295	286	0	0	2	16	0	103
3rp Sat Flow(s),veh/h/ln	1781	1777	1870	527	1777	1854	0	0	1585	1415	0	1585
ے Serve(g_s), s	4.1	0.6	0.6	0.0	37.6	37.6	0.0	0.0	0.1	0.8	0.0	4.9
Cycle Q Clear(g_c), s	4.1	0.6	0.6	0.0	37.6	37.6	0.0	0.0	0.1	6.0	0.0	4.9
Prop In Lane	1.00		0.00	1.00		0.05	0.00		1.00	1.00		1.00
ane Grp Cap(c), veh/h	180	802	844	22	999	694	0	0	717	969	0	717
//C Ratio(X)	0.52	0.65	0.65	0.00	0.84	0.84	0.00	0.00	0.00	0.05	0.00	0.14
4vail Cap(c_a), veh/h	316	1196	1258	132	923	963	0	0	717	969	0	717
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1:00	1.00
Jpstream Filter(I)	0.92	0.92	0.92	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00
Jniform Delay (d), s/veh	27.8	3.9	3.9	0.0	37.2	37.2	0.0	0.0	19.5	19.8	0.0	20.8
ncr Delay (d2), s/veh	2.2	8.0	0.8	0.0	5.3	5.1	0.0	0.0	0.0	0.1	0.0	0.4
nitial Q Delay(d3),s/veh	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.7	1.8	1.9	0.0	17.2	17.9	0.0	0.0	0.0	0.3	0.0	1.9
Jnsig. Movement Delay, s/veh												
_nGrp Delay(d),s/veh	30.0	4.7	4.7	0.0	42.5	42.3	0.0	0.0	19.5	19.8	0.0	21.3
nGrp LOS	ပ	Α	A	A	۵	Ω	Α	Α	В	В	A	0
Approach Vol, veh/h		1165			1148			2			119	
Approach Delay, síveh		6.7			45.4			19.5			21.1	
Approach LOS		A			Ω			В			O	
Timer - Assigned Phs		2		4		9	7	∞				
Phs Duration (G+Y+Rc), s		64.8		65.2		64.8	10.0	55.2				
Change Period (Y+Rc), s		0.9		6.5		0.9	4.0	6.5				
Max Green Setting (Gmax), s		30.0		87.5		30.0	16.0	67.5				
Max Q Clear Time (g_c+I1), s		2.1		11.0		6.9	6.1	39.6				
Green Ext Time (p_c), s		0.0		9.4		9.0	0.1	0.6				
Intersection Summary												
HCM 6th Ctrl Delay			24.3									
Company of the Company			2.1.7									

02/11/2019 CivTech BR

3: Smoke Tree West & Lincoln Dr

Smoke Tree Resort 2025 Background PM

4: Smoke Tree East & Lincoln Dr $_{\mbox{\scriptsize HCM}}$ 6th TWSC

2025 Background PM	PN PN	_					HCM 6th TWSC
Information							
Intersection	١						
Int Delay, s/ven	0						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	₹		r	\$	>		
Traffic Vol, veh/h	616		0	1032	0	0	
Future Vol, veh/h	616	-	0	1032	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	•	None	1	None		None	
Storage Length		1	25			ľ	
Veh in Median Storage,	#	1	1	0	0	1	
Grade, %	0			0	0		
Peak Hour Factor	06	8	06	8	06	8	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	1088		0	1147	0	0	
Major/Minor N	Major1	_	Major2	_	Minor1		
Conflicting Flow All	0	0	1089	0	1663	545	
Stage 1	•	1	1	•	1089	1	
Stage 2	,	•		•	574		
Critical Hdwy	•	1	4.14	1	6.84	6.94	
Critical Holwy Stg 1	•	•	•	•	5.84		
Critical Hdwy Stg 2	•	1	•	•	5.84	1	
Follow-up Hdwy	٠	•	2.22	٠	3.52	3.32	
Pot Cap-1 Maneuver	•	•	636	•	88	482	
Stage 1	•	•	•	•	284		
Stage 2	1	1	1	1	527	1	
Platoon blocked, %	٠	•		٠			
Mov Cap-1 Maneuver	•	•	636	•	88	482	
Mov Cap-2 Maneuver	•	1	1	1	204	1	
Stage 1	•	1	1	1	284	1	
Stage 2	•	•	•	•	527	'	
Approach	EB		WB		NB		
HCM Control Delay, s	0		0		0		
HCM LOS					⋖		
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		1	1	•	636	1	
HCM Lane V/C Ratio		•			•		
HCM Control Delay (s)		0		•	0		
HCM Lane LOS		A		•	V		
HCM 95th %tile Q(veh)		1	1	1	0	1	

Int Delay, s/veh	0						
Mouomont	FDT	CDD	MDI	MDT	IDI	MBB	
Moverment	EBI	EBK	WBL	WBI	NBL	NDK	
Lane Configurations	*		F	‡	>		
Traffic Vol, veh/h	978	_	2	1032	2	2	
Future Vol, veh/h	978	-	2	1032	2	2	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None		None		None	
Storage Length			22		0		
Veh in Median Storage, #	0 #/	•	•	0	0	,	
Grade, %	0	•		0	0		
Peak Hour Factor	8	06	8	06	8	06	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	1087		2	1147	2	2	
Major/Minor N	Major1	2	Major2	2	Minor1		
Conflicting Flow All	0	0	1088	0	1666	544	
Stage 1		1		•	1088		
Stage 2		,		'	578		
Critical Hdwy		1	4.14	1	6.84	6.94	
Critical Hdwy Stg 1					5.84		
Critical Hdwy Stg 2		•		1	5.84		
Follow-up Hdwy			2.22		3.52	3.32	
Pot Cap-1 Maneuver			637	•	87	483	
Stage 1	1	•	,	•	284		
Stage 2	1	1	1	1	524		
Platoon blocked, %	1	1		1			
Mov Cap-1 Maneuver	1	•	637	•	87	483	
Mov Cap-2 Maneuver		٠	٠		203		
Stage 1		•	•	•	283		
Stage 2	1	1	•	1	524		
Approach	EB		WB		NB		
HCM Control Delay, s	0		0		17.8		
HCM LOS					O		
			i	0		ab 01	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		286		1	637		
HCM Lane V/C Ratio		0.016	•		- 0.003	•	
HCM Control Delay (s)		17.8		1	10.7		
HCM Lane LOS		C			α		
)			2		

Synchro 10 Report Page 6

02/11/2019 CivTech BR

Synchro 10 Report Page 5

02/11/2019 CivTech BR

5: Lincoln Medical West & Lincoln Dr

Intersection							
Int Delay, sheh	0.7						
Movement	EBT	EBR	WBL	EBR WBL WBT NBL NBR	NBL	NBR	
Lane Configurations	₹		۳	‡	>		
Traffic Vol, veh/h	973	7	21	1004	30	56	
Future Vol, veh/h	973	7	21	1004	30	56	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free Free	Ē	Free Free	Stop Stop	Stop	
RT Channelized		None		- None		None	
Storage Length	٠	•	25	٠	0	٠	
Veh in Median Storage, #	0 #	1	1	0	0	1	
Grade, %	0	•	•	0	0	٠	
Peak Hour Factor	06	8	06	8	06	06	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	1081	00	23	1116	33	53	

	545			6.94			3.32	482				482							
Minor1	0 1689	- 1085	- 604	- 6.84	- 5.84	- 5.84	- 3.52	- 84	- 285	- 508		- 81	- 194	- 275	- 508	NB	22.4	ပ	
Major2	0 1089			- 4.14			- 2.22	- 636				- 636				WB	0.2		
Major1	All 0	1		1				nver		1	- %			1		EB	lay, s 0		
Major/Minor	Conflicting Flow All	Stage 1	Stage 2	Critical Hdwy	Critical Hdwy Stg 1	Critical Hdwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Stage 2	Platoon blocked, %	Mov Cap-1 Maneuver	Mov Cap-2 Maneuver	Stage 1	Stage 2	Approach	HCM Control Delay, s	HCM LOS	

WBT		٠	٠	٠	•	
WBL	989	0.037	10.9	В	0.1	
EBR			•			
EBT		•	•			
NBLn1 EBT EBR WBL WBT	268	0.232	22.4	S	0.0	
Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	HCM Control Delay (s)	HCM Lane LOS	HCM 95th %tile Q(veh)	

02/11/2019 CivTech BR

Smoke Tree Resort 2025 Background PM

6: Lincoln Medical East & Lincoln Dr HCM 6th TWSC

Int Delay, s/veh	0.2						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	₹		r	‡	>		
Traffic Vol, veh/h	995	4	0	1024	7	30	
Future Vol. Veryn	342	4 0	> <	1024	7 0	30	
Sign Control	Free	Free	Fig.	Free	Stop	Stop	
RT Channelized	,	None		None		None	
Storage Length	ľ		22		0		
Veh in Median Storage, #	0 #'			0	0		
Grade, %				0	0		
Peak Hour Factor	06	06	8	06	06	06	
Heavy Vehicles, %	7	7	7	7	7	2	
Mvmt Flow	1106	4	0	1138	2	33	
Major/Minor N	Major1	2	Major2	2	Minor1		
Conflicting Flow All	0	0	1110	0	1677	555	
Stage 1		1	1	٠	1108		
Stage 2	,			•	269		
Critical Hdwy	•	٠	4.14	٠	6.84	6.94	
Critical Hdwy Stg 1	٠				5.84		
Critical Hdwy Stg 2	•	1	1	1	5.84	,	
Follow-up Hdwy	٠		2.22	٠	3.52	3.32	
Pot Cap-1 Maneuver		•	625	•	98	475	
Stage 1	•	•	•	٠	278		
Stage 2	•			٠	230		
Platoon blocked, %	•	1		•			
Mov Cap-1 Maneuver	•	1	625	1	98	475	
Mov Cap-2 Maneuver	٠	•		٠	201		
Stage 1	•		1		278		
Stage 2	•		•		230		
Annroach	FB		WB		NR		
HCM Control Delay s	9 0				130		
HCM LOS	>		>		<u>.</u>		
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		438		•	625		
HCM Lane V/C Ratio		0.081			٠		
HCM Control Delay (s)		13.9	•	•	0		
HCM Lane LOS		В	•	•	⋖		
					(

02/11/2019 CivTech BR

Synchro 10 Report Page 7

7: Apartment Drwy & Lincoln Dr

8: AJ's Drwy & Lincoln Dr HCM 6th TWSC

Lincoln Dr Smoke Tree Resort
HCM 6th TWSC 2025 Background PM

nt Delay, s/veh	24											
	EBL	EBT	EBR \	WBL \	WBT W	WBR r	NBL P	NBT N	NBR S	SBL S	SBT	SBR
-ane Configurations	F	\$		je-	₽ ₽			4		j.		X _
raffic Vol, veh/h	8	826	46	7	920	10	74	3	53	∞	0	38
uture Vol, veh/h	∞	928	46	_	920	9	74	m	23	∞	0	38
eds, #/hr	0	0	0	0	0							0
	Free	Free		Free	Free Fi		Stop	Stop		Stop	Stop	Stop
RT Channelized		_	None		Š.	None	í	ĕ	None	í	Ż	None
Storage Length	25			22	,					0		0
/eh in Median Storage,	- #	0			0			0			0	
		0			0			0			0	
Peak Hour Factor	06	06	06	8	06	06	06	06	06	06	06	06
Heavy Vehicles, %		2	2		2	2	2	2	2	2	2	2
	9 1	1064	21	00	1022	=	82	3	26	6	0	42
fajor/Minor Ma	Major1		M	Major2		Minor1	or1		Minor2	or2		
Conflicting Flow All	1033	0	0	1115	0	0	1635 2	2157 5	558 15	1596		517
Stage 1					·	,		1108		1044	÷	
Stage 2	,	,	,	,	,			1049	,	552		
Critical Hdwy	4.14	÷		4.14	·	,			6.94 7	7.54	,	6.94
Critical Hdwy Stg 1	٠	,				,		5.54	9 -	6.54		
Critical Hdwy Stg 2		ř			í	,	6.54	5.54	- 6	6.54	ï	,
-ollow-up Hdwy	2.22			2.22		'				3.52	,	3.32
of Cap-1 Maneuver	899			622	í	,			473	71		503
Stage 1	٠							284	,	245	0	
Stage 2		·	÷		·	ř	205	303	-	486	0	
Platoon blocked, %		٠	٠			,			1			
Mov Cap-1 Maneuver	899	·		622			~ 09		473	28		503
Nov Cap-2 Maneuver	٠	٠	٠	٠				46		28		
Stage 1	·	ř	·	·	·	÷		280		242		
Stage 2							424	299	-	415		
	£			9			9			9		
	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0.1		\$ 382.4	2.4		2	24.1		
							ш			ပ		
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR W	WBL V	WBT W	WBR SBLn1 SBLn2	.n1SBL	rı2		
Capacity (veh/h)			899		-	622				503		
HCM Lane V/C Ratio			0.013	÷	- 0.013	113		- 0.153		0.084		
HCM Control Delay (s)	\$3	\$ 382.4	10.5		-	10.9	÷	÷	78 1	12.8		
HCM Lane LOS		ட	В		,	В	,			В		
HCM 95th %tile Q(veh)		11.3	C			0		•	0.5	0.3		

Synchro 10 Report	Page 9
02/11/2019	CivTech BR

02/11/2019 CivTech BR

(c)	3.6										
EBL	EBT.	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
15	4₽		F	₹			4		K.		¥C
12	951		69	918	6	16	—	100	2	0	. ∞
12	951	99	69	918	6	16	-	100	2	0	00
0	0	0	0	0	0	0	0	0	0	0	0
Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
- 1	•	None	1	1	None	1	•	None	1	•	None
25		•	25	٠	٠	٠	٠	٠	0	٠	0
	0	•	•	0	•	•	0	1	•	0	·
٠.	0	٠	٠	0	٠	٠	0	٠	٠	0	
8	06	0,	06	8	8	06	8	06	8	06	8
7	2		2	2	2	7	2	2	2	7	2
3	1057	19	77	1020	10	18	-	111	9	0	6
Major1		2	Major2		2	Minor1		2	Minor2		
1030	0	0	1124	0	0	1781	2301	295	1734		515
	•					1117	1117		1179		ì
٠.			٠	٠	٠	664	1184	,	555		
4.14		•	4.14	1		7.54	6.54	6.94	7.54	1	6.94
		•	٠	٠	٠	6.54	5.54	•	6.54		
	,	•	•			6.54	5.54	•	6.54		٠
2.22		٠	2.22	٠	٠	3.52	4.02	3.32	3.52		3.32
920		•	617	٠		25	88	470	29	0	202
	ľ	•	٠	٠	٠	221	281	•	202	0	
		•	•	•	•	416	261	•	484	0	
		•		•	•						
670	_	•	617	•	•	46	33	470	37		202
		٠	٠	٠	٠	46	33	•	37		
		•	•	•	•	217	276	•	198	•	
		•	٠	•	•	358	228	1	361	1	
	EB		WB			8			SB		
0.1			0.8			52.4			53.3		
						ш			ш		
	NBLn1	EBI	EBT	EBR	WBL	WBT	WBR S	WBR SBLn1 SBLn2	3BLn2		
	198	0/9	1		617			37	202		
	0.657	0.02	٠	,	0.124	٠	٠	0.15	0.018		
	52.4	10			11.7	•		118.8	12.3		
	ш	В	٠	٠	В	٠	٠	ш	В		
	3.9	0.1	٠		0.4		٠	0.5	0.1		

9: Scottsdale Rd & Lincoln Dr Timings Smoke Tree Resort 2025 Background PM

Color Colo		۸	†	~	>	ţ	•	•	۶	→	`*	
1	Sroup	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
6.5BT, Start of Green 1. 61 466 61 68 445 1762 66 1702 2. 61 466 61 68 445 1762 66 1702 3. 62 416 61 88 445 1762 66 1702 4. 4 5 8 8 5 2 1 6 4. 4 5 8 8 5 2 1 6 5. 2 10 0 50 100 5. 23.1% 23.1% 130 130 130 167 5. 23.1% 23.1% 10.0% 10.0% 23.1% 56.2% 10.8% 43.8% 23.1% 5. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Configurations	<i>y-</i>	₩	¥C	<i>y-</i>	₹	F	444	je-	₩	¥C_	
Name	Volume (vph)	225	61	466	61	89	445	1762	99	1702	527	
I	Volume (vph)	552	61	466	19	89	445	1762	99	1702	527	
4 4 5 8 8 5 2 1 6 4 4 5 8 8 5 2 1 6 7 0 70 70 70 70 100 50 100 130 130 130 130 130 130 140 570 130 300 300 130 130 130 140 570 140 40 36 36 36 40 47 33 47 15 15 20 00 00 00 00 00 00 00 00 0 00 00 00 00	lype	Split	NA	vo+mq	Split	NA	Prot	NA	Prot	NA	hm+ov	
7.0 7.0 7.0 7.0 7.0 10.0 5.0 10.0 2.0 10.0 3.0 3.0 3.0 3.0 13.0 13.0 13.0 1	sted Phases	4	4	2	00	00	2	2	_	9	4	
130 7.0 7.0 7.0 7.0 10.0 5.0 10.0 13.0 13.0 13.0 13.0 13.0 14.0 5.0 10.0 13.0 13.0 13.0 13.0 14.0 14.0 15.0 10.0 13.0 13.0 13.0 13.0 13.0 13.0 13	tted Phases			4							9	
130 130 130 130 140 160 160 130 130 130 130 130 130 130 130 140 140 150 130 130 130 130 130 147 110 160 130 130 130 130 130 140 140 57.0 130 130 130 130 130 140 140 57.0 130 130 130 130 130 140 140 57.0 130 130 130 130 130 130 130 130 130 13	tor Phase	4	4	2	∞	∞	2	2		9	4	
7.0 7.0 7.0 7.0 10.0 5.0 10.0 10.0 10.0 13.0 13.0 13.0 13.0 13	n Phase											
130 130 130 140 160 160 160 130 130 300 130 140 57.0 130 300 130 130 300 130 140 57.	um Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	10.0	5.0	10.0	7.0	
8 21% Start of Green 8 2178, 2178, 10.0% 13.0 37.0 14.0 57.0 8 2178, 2178, 10.0% 10.0% 21.0% 56.2% 10.8% 43.8% 2 9 1.5 1.5 2.0 2.0 1.5 1.0 2.0 1.0 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1.5 1.5 5.6 5.6 5.6 5.7 5.3 5.7 1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 0.19 0.36 0.06 0.07 0.05 0.0 1 1.2 1.1 37.3 92.9 99.0 66.0 25.4 88.3 43.0 1 1.2 1.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1 1.2 1.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1 84.3	um Split (s)	13.0	13.0	13.0	13.0	13.0	13.0	16.7	11.0	16.0	13.0	
6 231% 23.1% 10.0% 10.0% 23.1% 56.2% 10.8% 43.8% 23 14.0 40 3.6 3.6 40 4.7 3.3 4.7 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.5 5.5 5.6 5.6 5.5 5.7 5.3 5.7 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 137.3 92.9 39.0 66.0 25.4 88.3 43.0 1.1 11.1.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1.1 11.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1.1 11.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1.1 11.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1.1 11.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1.1 11.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1.1 11.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1.1 11.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1.1 11.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1.1 11.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1.1 11.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1.1 11.1 37.3 92.0 39.0 60.0 25.4 88.3 43.0 1.1 11.1 37.3 92.0 39.0 60.0 25.4 88.3 43.0 1.1 11.1 37.3 92.0 39.0 60.0 25.4 88.3 43.0 1.1 11.1 37.3 92.0 39.0 60.0 25.4 88.3 43.0 1.1 11.1 37.3 92.0 39.0 60.0 25.4 88.3 43.0 1.1 11.1 37.3 92.0 39.0 60.0 25.4 88.3 43.0 1.1 11.1 37.3 92.0 39.0 60.0 25.4 88.3 43.0 1.1 11.1 37.3 92.0 39.0 60.0 25.4 88.3 43.0 1.1 11.1 37.3 92.0	Split (s)	30.0	30.0	30.0	13.0	13.0	30.0	73.0	14.0	57.0	30.0	
15. 15. 15. 10. 20 15. 10. 20 11.0 16. 55 5.5 5.6 5.6 5.5 5.7 5.3 5.7 17. 107 00.0 00.0 00.0 00.0 00.0 18. 15. 15. 5.6 5.6 5.5 5.7 5.3 5.7 18. 15. 15. 5.6 5.6 5.5 5.7 5.3 5.7 18. 15. 15. 5.6 5.6 5.5 5.7 5.3 5.7 18. 15. 15. 5.6 5.6 5.6 5.7 5.3 5.7 18. 10. 00.0 00.0 00.0 00.0 00.0 00.0 19. 10. 00.0 00.0 00.0 00.0 00.0 00.0 19. 121.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 11.0 19. 00.0 00.0 00.0 00.0 00.0 00.0 19. 121.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 11.0 19. 10.1 37.3 92.9 39.0 66.0 25.4 88.3 37.3 11.0 19. 11.1 37.3 92.9 39.0 66.0 25.4 88.3 37.3 11.0 19. 10. 00.0 00.0 00.0 00.0 00.0 19. 121.1 37.3 92.9 39.0 66.0 25.4 88.3 37.3 11.0 19. 121.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 11.0 19. 121.1 37.3 92.9 39.0 66.0 25.4 88.3 37.3 11.0 19. 121.1 37.3 92.9 39.0 66.0 25.4 88.3 37.3 11.0 19. 121.1 37.3 92.9 39.0 66.0 25.4 88.3 37.3 11.0 19. 121.1 37.3 92.9 39.0 66.0 25.4 88.3 37.3 11.0 19. 121.1 37.3 92.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 2	Split (%)	23.1%	23.1%	23.1%	10.0%	10.0%	23.1%	56.2%	10.8%	43.8%	23.1%	
115 115 2.0 2.0 115 110 2.0 110 20 0.0 0.0 0.0 0.0 0.0 0.0 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22 15.5 5.6 5.6 5.5 5.7 5.3 5.7 5.3 5.7 24.5 46.7 7.3 7.3 22.2 70.3 80 53.7 8 24.5 46.7 7.3 7.3 22.2 70.3 80 53.7 8 24.5 46.7 7.3 7.3 22.2 70.5 80 6.4 1 0.0 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21 12.1.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1 21.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1 21.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1 21.1 37.3 92.9 39.0 6.0 20.0 0.0 25.8 43.3 73.3 F 26.9 2.4 88.3 43.0 1 26.8 84.3 5.4 9 27 28 33.4 37.3 P 28 43 5.4 9 28 43 5.4 9 28 43 6.4 9 28 43 6.4 9 28 49 6.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0	w Time (s)	4.0	4.0	4.0	3.6	3.6	4.0	4.7	3.3	4.7	4.0	
5 55 56 56 56 57 57 53 57 1 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ed Time (s)	1.5	1.5	1.5	2.0	2.0	1.5	1.0	2.0	1.0	1.5	
5 5.5 5.5 5.6 5.6 5.5 5.7 5.3 5.7 Lead Lead Lag	Fime Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Lead	Lost Time (s)	5.5	5.5	5.5	9.9	9.9	5.5	2.7	5.3	5.7	5.5	
8 Vorne None None None None None C-Max I 245 46.7 3 7.3 22.2 70.3 80 53.7 2.0.19 0.36 0.06 0.06 0.17 0.54 0.06 0.41 17.11 37.3 92.9 39.0 66.0 25.4 88.3 43.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Lag			Lead			Lead	Lag	Lead	Lag		
None None None None None None C-Max None None None None C-Max None None None None C-Max None	Lag Optimize?											
5 245 467 73 73 222 703 80 53.7 0.19 0.36 0.06 0.01 0.74 0.06 0.41 1 121.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 121.1 37.3 92.9 39.0 66.0 25.4 88.3 43.0 1 121.1 37.3 92.9 92.0 66.0 25.4 88.3 43.0 1 121.1 37.3 92.9 92.0 66.0 25.4 88.3 43.0 1 121.1 37.3 92.9 92.0 92.0 92.0 92.0 92.0 92.0 92.0	Mode	None	None	None	None	None	None	None	None	C-Max	None	
9 019 036 006 017 054 006 041 1 121.1 37.3 929 99 062 084 074 067 090 090 01 1 121.1 37.3 929 99.0 660 25.4 883 43.0 090 00 00 00 00 00 00 00 00 00 00 00 0	fct Green (s)	24.5	24.5	46.7	7.3	7.3	22.2	70.3	8.0	53.7	83.9	
7 1.07 0.85 0.69 0.62 0.84 0.74 0.67 0.90 1 17.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.60 25.4 88.3 43.0 1 12.11 37.3 92.9 39.0 6.0 0.0 0.0 0.0 0.0 1 12.11 37.3 92.9 39.0 6.0 0.0 0.0 0.0 0.0 1 12.11 37.3 92.9 39.0 6.0 0.0 0.0 0.0 0.0 1 12.11 37.3 92.9 39.0 6.0 0.0 0.0 0.0 0.0 0.0 1 12.11 37.3 92.9 39.0 6.0 0.0 0.0 0.0 0.0 0.0 1 12.11 37.3 92.9 39.0 6.0 0.0 0.0 0.0 0.0 0.0 1 12.11 37.3 92.9 39.0 6.0 0.0 0.0 0.0 0.0 0.0 1 12.11 37.3 92.9 39.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 12.11 37.3 92.9 39.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	ted g/C Ratio	0.19	0.19	0.36	90.0	90:0	0.17	0.54	90.0	0.41	0.65	
1 121.1 37.3 92.9 39.0 66.0 25.4 883 43.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	offe	1.07	1.07	0.85	69.0	0.62	0.84	0.74	0.67	0.00	0.55	
6:SBT, Start of Green 11.13	ol Delay	119.1	121.1	37.3	92.9	39.0	0.99	25.4	88.3	43.0	12.6	
6.SBT, Slart of Green	e Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
6:SB1, Slart of Green Intersection LOS: D ICL Level of Service E	Delay	119.1	121.1	37.3	92.9	39.0	0.99	25.4	88.3	43.0	12.6	
84.3 54.9 33.4 F D C C C C C C C C C C C C C C C C C C		ı	ш	٥	Œ.	٥	ш	S	ш.	٥	В	
6.SBT, Start of Green Intersection LOS: D Intersection LOS: D ICU Level of Service E	ach Delay		84.3			54.9		33.4		37.3		
6:SBT, Start of Green	ach LOS		ш.					ပ		Ω		
6:SBT, Start of Green	ection Summary											
6:SBT, Slart of Green 6:SBT, Slart of Green 7%	Length: 130											
6:5B1, Start of Green 7%	ited Cycle Length: 130	-	i									
%	t: 0 (0%), Referenced to	phase 6:3	SBT, Sta	rt of Gree	_							
	al Cycle: 100 of Type: Actuated Coord	dinotod										
45.1 Ization 86.9%	or rype. Actualeu-Court	miateu										
	ection Signal Delay: 45	-			ū	prepertion	U.SO I					
	ection Capacity Utilization	%6.9% uo			0	U Level o	of Service	E C				
	sis Period (min) 15											

02/11/2019 CivTech BR \$Ø **₹**

₹

Splits and Phases: 9: Scottsdale Rd & Lincoln Dr

Synchro 10 Report Page 11

Smoke Tree Resort 2025 Background PM

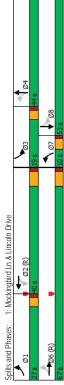
9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

Febr Febr Febr Welt Welt Welt Welt Net Net Net Net Set			t	•	•		,	_	-	_		•	,
Secondary Color Secondary	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
552 61 466 61 68 78 445 1762 50 66 1702 552 61 466 61 68 78 445 1762 50 66 1702 100 <t< td=""><td>Lane Configurations</td><td>æ</td><td>4</td><td>×</td><td>k</td><td>¥.</td><td></td><td>K</td><td>AAT</td><td></td><td>×</td><td>WWW</td><td>K</td></t<>	Lane Configurations	æ	4	×	k	¥.		K	AAT		×	WWW	K
552 61 466 61 68 78 445 1762 50 66 1702 100 10	Traffic Volume (veh/h)	225	61	466	- 61	89	78	445	1762	20	99	1702	527
1.00	Future Volume (veh/h)	552	19	466	61	89	78	445	1762	20	99	1702	527
1,00	Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
1.00	Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
No	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1870 1870	Work Zone On Approach		No No			No No			No			No	
662 0 518 68 76 87 494 1958 56 73 1891 690 0.90 0.90 0.90 0.90 0.90 0.90 0.90	Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
090 090 090 090 090 090 090 090 090 090	Adj Flow Rate, veh/h	662	0	518	89	76	87	464	1958	26	73	1891	286
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Peak Hour Factor	0.00	06:0	0.00	06:0	06:0	06:0	06:0	06.0	06:0	06:0	0.00	0.90
671 0 551 101 101 90 551 2669 73 93 2015 662 00 0.06 0.06 0.06 0.16 0.50 0.50 0.50 0.39 8563 0 1885 1781 1777 1885 3456 5102 146 1781 5106 642 0 518 68 76 87 494 1305 709 73 1891 741 0.0 24.5 4.9 5.5 7.1 18.2 40.1 40.3 5.3 46.3 741 0.0 24.5 4.9 5.5 7.1 18.2 40.1 40.3 5.3 46.3 740 0.0 24.5 4.9 5.5 7.1 18.2 40.1 40.3 5.3 46.3 741 0.0 24.5 4.9 0.5 7.0 1.00 1.00 1.00 1.00 671 0.0 551 101 101 90 551 1784 299 93 2015 671 0.0 551 101 101 90 551 1782 995 119 673 0.33 0.33 0.33 1.00 1.00 1.00 1.00 1.0	Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
0.06 0.00 0.06 0.06 0.06 0.06 0.16 0.50 0.50 0.09 0.38 0.38 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	Cap, veh/h	671	0	221	101	101	06	221	2569	73	93	2015	924
3863 0 1885 1781 1777 1885 3456 5102 146 1781 5106 662 0 518 68 76 87 44 1302 709 73 1897 1788 1788 1789 1702 1844 1781 1702 1844 1781 1702 1844 1781 1702 1844 1781 1702 1844 1781 1702 1844 1781 1702 1844 1781 1702 1844 1781 1702 1844 1781 1702 1849 1702 1849 1702 1849 1702 1849 1702 1849 1702 1849 1702 1849 1702 1849 1702 1949 1702 1	Arrive On Green	90:0	0.00	90:0	90:0	90:0	90.0	0.16	0.50	0.50	0.05	0.39	0.39
662 0 518 68 76 817 494 1305 709 73 1891 1781 0 1885 1781 1772 1885 1782 1702 1844 1702	Sat Flow, veh/h	3563	0	1585	1781	1777	1585	3456	5102	146	1781	2106	1585
1781 0 1885 1781 1777 1385 1728 1702 1844 1781 1702 1844 1781 1702 1844 1781 1702 1844 1781 1702 1841 1702 1841 1702 1841 1702 1841 1702 1841 1702 1841 1702 1841 1702 1841 1702 1841 1702 1841 1702 1841 1702 1841 184	Grp Volume(v), veh/h	662	0	518	89	9/	87	464	1305	407	73	1891	586
241 0.0 24.5 4.9 5.5 7.1 18.2 40.1 40.3 5.3 46.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	Grp Sat Flow(s),veh/h/ln	1781	0	1585	1781	1777	1585	1728	1702	1844	1781	1702	1585
24.1 0.0 24.5 4.9 5.5 7.1 182 40.1 40.3 5.3 46.3 1.00 1.00 1.00 1.00 1.00 0.08 1.00 0.08 1.00 0.09 1.00 1.00 1.00 1.00 0.08 1.00 0.09 0.00 0.94 0.67 0.75 0.96 0.90 0.76 0.76 0.79 0.94 0.67 0.07 0.09 0.00 0.94 0.67 0.75 0.96 0.90 0.76 0.76 0.79 0.94 0.67 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Q Serve(g_s), s	24.1	0.0	24.5	4.9	5.5	7.1	18.2	40.1	40.3	5.3	46.3	31.8
1100 1100 1100 1100 1100 1000 1000 100	Cycle Q Clear(g_c), s	24.1	0.0	24.5	4.9	5.5	7.1	18.2	40.1	40.3	5.3	46.3	31.8
10 671 0 551 101 101 90 551 1714 929 93 2015 10 10 101 101 90 551 1714 929 93 2015 10 10 10 100 100 100 100 100 100 100 10 10	Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.08	1.00		1.00
0.099 0.000 0.094 0.67 0.75 0.96 0.090 0.76 0.76 0.79 0.94 0.671 0 551 101 101 90 651 1762 955 119 2015 0.033 0.33 0.33 0.33 0.100 1.00 1.00 1.	Lane Grp Cap(c), veh/h	671	0	551	101	101	06	221	1714	676	93	2015	924
671 0 551 101 101 90 651 1762 955 119 2015 10.33 0.33 0.33 1.00 1.00 1.00 1.00 1.00	V/C Ratio(X)	0.99	0.00	0.94	0.67	0.75	96.0	06:0	97.0	0.76	0.79	0.94	0.63
0.33 0.33 0.33 1.00 1.00 1.00 1.00 1.00	Avail Cap(c_a), veh/h	671	0	551	101	101	06	651	1762	955	119	2015	924
1,000 0.000 1,000	HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
h 608 0.0 46.1 60.1 60.4 61.2 536 260 260 609 378 310 0.0 240 13.1 240 822 125 1.7 3.2 176 100 hh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
310 000 240 13.1 24.0 822 12.5 17 3.2 77.6 10.0 h/ln 455 0.0 8.9 2.6 3.1 4.9 8.9 16.3 81 2.8 20.8 y.s/weh 91.8 0.0 70.0 13.2 84.4 143.4 66.1 27.7 29.2 78.5 47.8 E F F E C C E D E F F E C C E D E F F E C C E D E D E F F E C C E D E D E E F F E C C E D E D E E F F E C C E D E D E E F F E C C E D E D E E F F E C C E D E D E E F F E C C E D E D E E F F E C C E D E D E E F F E C C E D E D E E F F E C C E D E D E E F F E C C E D E D E E F F E C C E D E D E D E E F F E C C E D E D E D E E F F E C C E E D E E F F E C C E E D E E F F E C C E E D E E F F E C C E E D E E F F E C C E E D E E F F E C C E E D E E F F E C C E E D E E F F E C C E E D E E F F E C C E E D E E F F E C C E E D E E F F E C C E E D E E F F E E C C E E D E E F F E E C C E E D E E F F E E C C E E D E E F F E E C C E E D E E E E E E E E E D E E E E	Uniform Delay (d), s/veh	8.09	0.0	46.1	60.1	60.4	61.2	53.6	26.0	26.0	6.09	37.8	17.9
hylin 145 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Incr Delay (d2), s/veh	31.0	0.0	24.0	13.1	24.0	82.2	12.5	1.7	3.2	17.6	10.0	3.3
hin 145 0.0 18.9 2.6 3.1 4.9 8.9 16.3 18.1 2.8 20.8 y, s/eh	Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
97.8	%ile BackOfQ(50%),veh/ln		0.0	18.9	5.6	3.1	4.9	8.9	16.3	18.1	2.8	20.8	18.5
918 0.0 70.0 73.2 84.4 143.4 66.1 27.7 29.2 78.5 47.8 F A E E F F E C C E D 231 2568 25.50 82.3 103.3 35.7 42.6 P F F D D D D D D D D D D D D D D D D D	Unsig. Movement Delay, s/veh												
F A E E F F E C C E	LnGrp Delay(d),s/veh	91.8	0.0	70.0	73.2	84.4	143.4	1.99	27.7	29.5	78.5	47.8	21.2
1180 231 2508 82.3 103.3 2508 82.3 103.3 25.7 F	LnGrp LOS	ш	A	ш	Ш	ш	ш	Ш	ပ	ပ	ш	۵	
1 2 4 5 6 8 8 35.7 103.3 35.7 103.3 103.3 103.3 103.3 103.3 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	Approach Vol, veh/h		1180			231			2508			2550	
1	Approach Delay, s/veh		82.3			103.3			35.7			42.6	
12.1 71.2 3.0 2.6.2 57.0 17.2 8.5 5.5 5.5 5.7 8.7 47.3 67.3 24.5 24.5 51.3 6.0 3.3 0.0 0.5 1.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	Approach LOS		Œ.			ш			٥			٥	
12.1 71.2 30.0 26.2 57.0 1 5.3 5.7 5.5 5.5 5.7 5.7 1 7.3 42.3 24.5 24.5 51.3 24.5 24.5 24.5 24.5 24.3 24.5 24.3 24.5 24.3 24.5 24.3 24.5 24.3 24.3 26.5 20.2 48.3 26.5 20.2 48.3 26.5 20.3 49.3 26.5 20.5 1.5 20.3 26.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	Timer - Assigned Phs	_	2		4	2	9		8				
*5.3 5.7 5.5 5.5 5.7 *8.7 67.3 24.5 24.5 51.3 7.3 42.3 26.5 20.2 48.3 0.0 3.3 0.0 0.5 1.5 P. D. D.	Phs Duration (G+Y+Rc), s	12.1	71.2		30.0	26.2	57.0		13.0				
*87 6/3 24.5 24.5 51.3 7.3 42.3 26.5 20.2 48.3 0.0 3.3 0.0 0.5 1.5 49.3 D	Change Period (Y+Rc), s	* 5.3	5.7		5.5	5.5	5.7		9.9				
7.3 42.3 26.5 20.2 48.3 0.0 3.3 0.0 0.5 1.5 49.3 49.3 D.0 D.0 0.5 1.5 D.0	Max Green Setting (Gmax), s	* 8.7	67.3		24.5	24.5	51.3		7.4				
s 0.0 3.3 0.0 0.5 1.5 49.3 D	Max Q Clear Time (g_c+I1), s	7.3	42.3		26.5	20.2	48.3		9.1				
ıry	Green Ext Time (p_c), s	0.0	3.3		0.0	0.5	1.5		0.0				
	Intersection Summary												
	HCM 6th Ctrl Delay			49.3									
	HCM 6th LOS			۵									

User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for furning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

02/11/2019


CivTech BR

Smoke Tree Resort 2025 Total AM

1: Mockingbird Ln & Lincoln Drive Timings

-	SBT	2	%	96	NA	8		∞		7.0	33.5	53.0	40.8%	4.0	2.5	0.0	6.5	Lag	Yes	None	28.9	0.22	0.85	9.09	0.0	9.09	٥	47.9	Ω									
۶	SBL	*	82	82	pm+pt	3	8	m		3.5	8.0	19.0	14.6%	3.0	1.0	0.0	4.0	Lead	Yes	None	33.4	0.26	0.27	36.6	0.0	36.6	٥											1
←	NBT	2	37	37	N A	4		4		7.0	33.5	44.0	33.8%	4.0	2.5	0.0	6.5	Lag	Yes	None	16.2	0.12	0.29	33.0	0.0	33.0	ပ	32.8	O							2	CU Level of Service D	
•	NBL	<u>, </u>	9	9	pm+pt	7	4	7		2.0	9.5	10.0	7.7%	3.5	1.0	0.0	4.5	Lead	Yes	None	21.9	0.17	0.02	30.3	0.0	30.3	O						Green				ICU Level of Service	
ţ	WBT	₩.	971	971	NA	2		2		15.0	27.0	40.0	30.8%	4.5	1.5	0.0	0.9	Lag	Yes	C-Max	64.1	0.49	0.65	23.8	0.0	23.8	O	23.7	O				Start of			3	≣ ⊆	2
>	WBL	r	22	22	Perm		2	2		15.0	27.0	40.0	30.8%	4.5	1.5	0.0	0.9	Lag	Yes	C-Max	64.1	0.49	0.13	19.5	0.0	19.5	В						d 6:EBTL					
†	EBT	₩.	1055	1055	NA	9		9		15.0	27.0	67.0	51.5%	4.5	1.5	0.0	0.9			C-Max	9.98	0.67	0.52	13.9	0.0	13.9	В	16.5	В				WBTL and					
4	EBL	<u>, </u>	242	242	pm+pt	<u></u>	9	-		3.5	8.0	27.0	20.8%	3.0	1.0	0.0	4.0	Lead	Yes	None	9.88	99.0	0.72	28.3	0.0	28.3	O						o phase 2:\		dinated	c	ion 78.7%	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Queue Delay	Total Delay	ros	Approach Delay	Approach LOS	Intersection Summary	Cycle Length: 130	Actuated Cycle Length: 130	Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green	Natural Cycle: 90	Control Type: Actuated-Coordinated	Maximum v/c Ratio: 0.85	Intersection Capacity Utilization 78.7%	Analysis Period (min) 15

1: Mockingbird Ln & Lincoln Drive

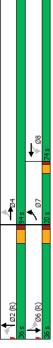
02/12/2019 CivTech BR

Synchro 10 Report Page 1

Smoke Tree Resort 2025 Total AM

1: Mockingbird Ln & Lincoln Drive HCM 6th Signalized Intersection Summary

	4	†	<i>></i>	>	ţ	4	•	←	•	٠	→	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	-	₩		r	₩		r	2,		F	2	
Traffic Volume (veh/h)	242	1055	33	25	97.1	48	9	37	25	82	%	253
Future Volume (veh/h)	242	1055	33	25	971	48	9	37	25	82	%	253
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No No			9			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	569	1172	37	28	1079	53	7	41	28	94	107	281
Peak Hour Factor	06:0	06:0	0.00	0.00	0.00	0.00	06:0	06:0	06:0	06:0	0.00	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	325	2114	19	241	1643	81	103	226	154	366	118	311
Arrive On Green	0.09	09:0	09:0	0.32	0.32	0.32	0.01	0.22	0.22	0.05	0.26	0.26
Sat Flow, veh/h	1781	3516	111	462	3447	169	1781	1036	707	1781	456	1198
Grp Volume(v), veh/h	569	592	617	28	929	976	7	0	69	94	0	388
Grp Sat Flow(s),veh/h/ln	1781	1777	1850	462	1777	1840	1781	0	1743	1781	0	1655
Q Serve(g_s), s	9.6	25.9	25.9	0.9	35.0	35.1	0.4	0.0	4.2	5.2	0.0	29.5
Cycle Q Clear(g_c), s	9.6	25.9	25.9	15.8	35.0	35.1	0.4	0.0	4.2	5.2	0.0	29.5
Prop In Lane	1.00		90.0	1.00		60:0	1.00		0.41	1.00		0.72
Lane Grp Cap(c), veh/h	325	1068	1112	241	847	877	103	0	380	366	0	429
V/C Ratio(X)	0.83	0.55	0.55	0.12	99.0	99.0	0.07	0.00	0.18	0.24	0.00	0.90
Avail Cap(c_a), veh/h	474	1068	1112	241	847	877	163	0	503	208	0	592
HCM Platoon Ratio	1.00	1.00	1.00	0.67	19.0	19.0	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.55	0.55	0.55	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	23.7	15.5	15.5	32.2	35.1	35.1	41.3	0.0	41.4	35.0	0.0	46.6
Incr Delay (d2), s/veh	7.8	2.1	2.0	0.5	2.2	2.1	0.3	0.0	0.2	0.3	0.0	13.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0:0	0.0
%ile BackOfQ(50%),veh/ln	4.7	10.8	11.3	0.8	16.5	17.0	0.5	0.0	<u>~</u> ∞	2.3	0.0	13.7
Unsig. Movement Delay, s/ven		,		c	0	0		c	, ,,	L	d	
LnGrp Delay(d),srven	د. ای د	0.7	0.7	37.8	5/.5	31.2	0.14	0.0	0.14	33.3	0.0	00.3
LITGID LOS	اد	Q 0777	۵	اد	71,0	۵	٥	X F		۵	¥ 60	الا
Approach Vol. verifit		20.1			27.1			41.6			462	
Approach Delay, Swell Approach LOS		Z0.1			. C			4.0			+ icc	
		,)						1	
Timer - Assigned Phs	_	2	3	4		9	7	∞				
Phs Duration (G+Y+Rc), s	16.2	0.89	11.0	34.8		84.2	9.9	40.2				
Change Period (Y+Rc), s	4.0	0.9	4.0	6.5		0.9	4.5	6.5				
Max Green Setting (Gmax), s	23.0	34.0	15.0	37.5		61.0	2.5	46.5				
Max Q Clear Time (g_c+I1), s	11.6	37.1	7.2	6.2		27.9	2.4	31.5				
Green Ext Time (p_c), s	9.0	0.0	0.1	0.3		10.3	0.0	2.2				
Intersection Summary												
HCM 6th Ctrl Delay			32.1									
HCM 6th LOS			S									
Notes												


Notes
User approved pedestrian interval to be less than phase max green.

02/12/2019 CivTech BR

Smoke Tree Resort 2: Quail Run Rd & Lincoln Drive 2025 Total AM

	4	†	•	ţ	•	—	۶	→	
-ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	₩.	je-	₩\$		4	*	æ	
raffic Volume (vph)	115	1117	2	937	-	0	26	0	
Future Volume (vph)	115	1117	2	937	-	0	26	0	
Turn Type	pm+pt	NA	Perm	Ν	Perm	NA	Perm	NA	
Protected Phases	7	4		80		2		9	
Permitted Phases	4		8		2		9		
Detector Phase	7	4	∞	80	2	2	9	9	
Switch Phase									
Minimum Initial (s)	3.5	15.0	15.0	15.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	8.0	28.0	28.0	28.0	33.0	33.0	33.0	33.0	
Total Split (s)	20.0	94.0	74.0	74.0	36.0	36.0	36.0	36.0	
Total Split (%)	15.4%	72.3%	26.9%	26.9%	27.7%	27.7%	27.7%	27.7%	
Yellow Time (s)	3.0	4.0	4.0	4.0	4.5	4.5	4.5	4.5	
All-Red Time (s)	1.0	2.5	2.5	2.5	1.5	1.5	1.5	1.5	
ost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0	0.0	0.0	
Fotal Lost Time (s)	4.0	6.5	6.5	6.5		0.9	0.9	0.9	
-ead/Lag	Lead		Lag	Lag					
-ead-Lag Optimize?	Yes		Yes	Yes					
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	1.79	65.2	50.4	50.4		52.3	52.3	52.3	
Actuated g/C Ratio	0.52	0.50	0.39	0.39		0.40	0.40	0.40	
//c Ratio	0.55	0.70	0.05	0.77		0.01	0.02	0.09	
Control Delay	33.2	42.4	29.0	44.3		0.0	28.4	0.2	
Queue Delay	0.0	0.0	0.0	0.0		0.0	0.0	0.0	
Fotal Delay	33.2	42.4	29.0	44.3		0.0	28.4	0.2	
SO-	S	۵	S	٥		⋖	O	⋖	
Approach Delay		41.6		44.2				8.2	
Approach LOS		O		Ω				∢	
Intersection Summary									
Sycle Length: 130									
Actuated Cycle Length: 130									
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green	phase 2:	NBTL an	16:SBTL	Start of	Green				
Natural Cycle: 70									
Control Type: Actuated-Coordinated	dinated								
Maximum v/c Ratio: 0.77									
ntersection Signal Delay: 41.2	.2			_	tersectio	Intersection LOS: D			
ntersection Capacity Utilization 67.4%	ion 67.4%			9	:U Level	CU Level of Service C	o C		
Analysis Period (min) 15									

Splits and Phases: 2: Quail Run Rd & Lincoln Drive

02/12/2019 CivTech BR

Synchro 10 Report Page 3

Smoke Tree Resort 2025 Total AM

2: Quail Run Rd & Lincoln Drive HCM 6th Signalized Intersection Summary

Color Colo		ŀ				١,	١.		ŀ		-	-	٦
EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 1		١	†	>	/	ļ	1	•	-	•	٠	→	*
1	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
115 117	Lane Configurations	F	₩		۴	₩			4		r	2	
115 1117 4 2 937 12 1 0 0 8 26 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Traffic Volume (veh/h)	115	1117	4	2	937	12		0	8	26	0	99
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Future Volume (veh/h)	115	1117	4	2	937	12	-	0	∞	26	0	99
100	Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
100	Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
No 1870 1870 1870 1870 1870 1870 1870 1870	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1870 1870	Work Zone On Approach		9			%			9			No No	
128 1241 4 2 1041 13 1 0 9 29 090 090 090 090 090 090 090 090 090 09	Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	Adj Flow Rate, veh/h	128	1241	4	2	1041	13	-	0	6	29	0	73
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Peak Hour Factor	06.0	06:0	06.0	06.0	06.0	06:0	06:0	06:0	06:0	06:0	0.00	0.90
208 1567 5 182 1217 15 83 21 668 721 1718 283 31 2 1 668 721 1718 283 31 2 1 668 721 1718 601 601 601 601 601 601 601 601 601 601	Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
0.12 0.86 0.86 0.45 0.45 0.47 0.00 0.47 0.47 1781 36.33 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	Cap, veh/h	208	1567	2	182	1217	15	83	21	899	721	0	749
1781 3633 12 447 3594 45 112 45 1413 1406 1788 607 638 2 515 539 10 0 0 29 1781 3638 2 515 539 10 0 0 0 29 1781 1868 447 1777 1868 500 0 0 0 0 1781 193 19,3 0.4 33.7 33.7 0.0 0.0 0.0 1892 601 19,3 19,3 7.6 33.7 33.7 0.0 0 0 0 1982 19,3 19,3 2.0 0.0 0.0 0.0 1983 1993 19,3 3.3 3.3 0 0 0 0 1993 1993 1993 1993 1993 0 0 0 1994 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1996 1997 1996 1996 1996 1996 1997 1997 1996 1996 1996 1997 1997 1996 1996 1996 1998 1996 1996 1996 1996 1999 1996 1996 1996 1996 1999 1996 1996 1996 1996 1999 1996 1996 1996 1996 1999 1996 1996 1996 1996 1999 1996 1996 1996 1996 1999 1996 1996 1996 1996 1999 1996 1996 1996 1996 1999 1996 1996 1996 1996 1999 1996 1996 1996 1996 1990 1996 1996 1996 1996 1990 1996 1996 1996 1996 1990 1996 1996 1996 1996 1990 1996 1996 1996 1996 1990 1996 1996 1996 1996 1990 1996 1996 1996 1996 1990 1996 1996 1996 1996 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990	Arrive On Green	0.12	98.0	98.0	0.45	0.45	0.45	0.47	0.00	0.47	0.47	0.00	0.47
128 667 638 2 515 539 10 0 29 1781 1777 1868 447 1777 1862 1570 0 0 1046 6.0 19;3 19;3 7.6 33.7 33.7 0.0 0.0 0.0 0.0 6.0 19;3 19;3 7.6 33.7 33.7 0.4 0.0 0.0 0.0 1.00 0.01 1.00 0.02 0.10 0.00 0.0 0.0 0.61 0.79 0.79 0.79 0.79 0.85 0.86 0.86 0.86 0.01 0.0 0.0 0.0 288 0.86 0.86 0.86 1.00 1.00 1.00 1.00 0.00 0.00 0.04 0.86 0.86 0.86 1.00 1.00 1.00 1.00 0.00 0.00 0.0 28.2 6.4 6.4 6.4 6.4 8.0 32.9 32.9 18.2 0.0 0.0 18.4 2.5 1.7 1.6 0.0 5.0 1.00 1.00 0.0 0.0 0.0 0.0 1.84 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.85 0.86 0.86 0.80 0.14.2 14.9 0.2 0.0 0.0 0.0 1.87 0.89 0.89 0.89 0.89 0.99 0.99 1.37 1137 1166 0.99 0.99 0.99 0.99 1.38 0.99 0.99 0.99 0.99 0.99 1.39 0.99 0.99 0.99 0.99 0.99 1.30 0.99 0.99 0.99 0.99 0.99 1.31 0.99 0.99 0.99 0.99 0.99 1.32 0.99 0.99 0.99 0.99 0.99 1.33 0.99 0.99 0.99 0.99 0.99 1.34 0.99 0.99 0.99 0.99 0.99 1.35 0.99 0.99 0.99 0.99 1.35 0.99 0.99 0.99 0.99 1.37 0.99 0.99 0.99 0.99 1.38 0.99 0.99 0.99 0.99 1.39 0.99 0.99 0.99 0.99 1.30 0.99 0.99 0.99 0.99 1.30 0.99 0.99 0.99 1.31 0.99 0.99 0.99 1.32 0.99 0.99 0.99 1.32 0.99 0.99 0.99 1.32 0.99 0.99 0.99 1.35 0.99 0.99 0.99 1.37 0.99 0.99 0.99 1.38 0.99 0.99 0.99 1.39 0.99 0.99 1.39 0.99 0.99 1.39 0.99 0.99 1.39 0.99 0.99 1.39 0.99 0.99 1.30	Sat Flow, veh/h	1781	3633	12	447	3594	45	112	45	1413	1406	0	1585
1781 1777 1868 447 1777 1862 1570 0 0 1406 6.0 19.3 19.3 0.4 33.7 33.7 0.0 0.0 0.0 0.0 6.0 19.3 19.3 7.6 33.7 33.7 0.4 0.0 0.0 0.0 6.0 19.3 19.3 7.6 33.7 33.7 0.4 0.0 0.0 0.0 700 1.00 0.01 1.00 0.02 0.10 0.00 0.00 0.01 700 1.00 1.00 0.08 0.01 0.00 0.00 0.01 700 2.00 2.00 1.35 2.62 92.3 967 773 0 0 0 721 700 2.00 2.00 1.33 1.33 1.33 1.00 1.00 0.00 700 2.00 2.00 1.33 1.33 1.33 1.00 1.00 0.00 700 2.82 2.4 6.4 2.80 32.9 32.9 18.2 0.0 0.0 700 0.0 0.0 0.0 0.0 0.0 700 0.0 0.0 0.0 0.0 0.0 700 0.0 0.0 0.0 0.0 700 0.0 0.0 0.0 700 0.0 0.0 0.0 700 0.0 0.0 0.0 700 0.0 0.0 700 0.0 0.0 0.0 700 0.0 0.0	Grp Volume(v), veh/h	128	209	638	2	515	539	10	0	0	29	0	73
6.0 19.3 19.3 0.4 33.7 33.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Grp Sat Flow(s),veh/h/ln	1781	1777	1868	447	1777	1862	1570	0	0	1406	0	1585
s 6.0 19.3 19.3 76 33.7 33.7 0.4 0.0 0.0 13 1.00	Q Serve(g_s), s	0.9	19.3	19.3	0.4	33.7	33.7	0.0	0.0	0.0	6.0	0.0	3.3
100	Cycle Q Clear(g_c), s	0.9	19.3	19.3	9.7	33.7	33.7	0.4	0.0	0.0	1.3	0.0	3.3
Figh. 208 766 896 182 602 631 773 0 0 721 10.61 0.79 0.79 0.79 0.01 0.86 0.86 0.01 0.00 0.00 0.04 11.02 0.00 2.00 2.00 1.33 1.33 1.33 1.00 1.00 0.00 0.00 10.86 0.86 0.86 1.00 1.00 1.00 0.00 0.00 1.00 10.84 0.86 0.86 1.00 1.00 1.00 0.00 0.00 0.00 10.84 0.86 0.86 1.00 1.00 0.00 0.00 0.00 0.00 10.84 0.80 0.80 0.00 0.00 0.00 0.00 0.00 10.84 0.00 0.00 0.00 0.00 0.00 0.00 10.85 0.00 0.00 0.00 0.00 0.00 10.85 0.00 0.00 0.00 0.00 10.85 0.00 0.00 0.00 0.00 10.85 0.00 0.00 0.00 10.85 0.00 0.00 0.00 10.85 0.00 0.00 0.00 10.85 0.00 0.00 0.00 10.85 0.00 0.00 0.00 10.85 0.00 0.00 0.00 10.85 0.00 0.00 0.00 10.85 0.00 0.00 0.00 10.85 0.00 0.00 0.00 10.85 0.00 0.00 10.85 0.00 0.00 10.85 0.00 0.00 10.85 0.00 0.00 10.85 0.00 0.00 10.85 0.00 0.00 10.85 0.00 0.00 10.85 0.00 0.00 10.85 0.00 0.00 10.85 0.00 0.00 10.85 0.00 0.00 10.85 0.00 0.00 10.85 0.00 0.00 10.85 0.00 0.00 10.85 0	Prop In Lane	1.00		0.01	1.00		0.02	0.10		06:0	1.00		1.00
1964 1979 1970 1986 1986 1970	Lane Grp Cap(c), veh/h	208	99/	908	182	602	631	773	0	0	721	0	749
The control of the	V/C Ratio(X)	0.61	0.79	0.79	0.01	0.86	0.86	0.01	0.00	0.00	0.04	0.00	0.10
280 200 200 133 133 133 100 100 100 100 100 100 1	Avail Cap(c_a), veh/h	317	1196	1257	262	923	296	773	0	0	721	0	749
0.86 0.86 0.86 1.00 1.00 1.00 1.00 0.00 0.00 1.00 0	HCM Platoon Ratio	2.00	2.00	2.00	1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00
282 64 64 28.0 32.9 32.9 182 000 000 184 25 1.7 1.6 0.0 5.0 4.0 0.0 0.0 0.0 25 3.2 3.3 0.0 14.2 14.9 0.2 0.0 0.0 0.0 25 3.2 3.3 0.0 14.2 14.9 0.2 0.0 0.0 0.0 25 3.2 3.3 0.0 14.2 14.9 0.2 0.0 0.0 0.0 25 3.2 3.3 0.0 14.2 14.9 0.2 0.0 0.0 185 2	Upstream Filter(I)	0.86	0.86	0.86	1.00	1.00	1.00	1.00	0.00	00.00	1.00	0.00	1.00
2.5 1.7 1.6 0.0 5.0 4.8 0.0 0.0 0.0 0.1 2.5 3.2 3.3 0.0 14.2 14.9 0.2 0.0 0.0 0.0 2.5 3.2 3.3 0.0 14.2 14.9 0.2 0.0 0.0 0.0 2.5 3.2 3.3 0.0 14.2 14.9 0.2 0.0 0.0 0.5 2.5 3.2 3.3 0.0 14.2 14.9 0.2 0.0 0.0 0.5 2.5 3.2 3.3 0.0 14.2 14.9 0.2 0.0 0.0 18.5 2.4 A A C D D B A A B B 18.2 10.2 B B 18.2 11.2 2 4 6.7 12.0 50.5 6.0 6.5 6.0 4.0 6.5 30.0 87.5 30.0 16.0 6.5 2.4 21.3 5.3 8.0 35.7 2.1 22.1	Uniform Delay (d), s/veh	28.2	6.4	6.4	28.0	32.9	32.9	18.2	0.0	0.0	18.4	0.0	19.0
00 00 00 00 00 00 00 00 00 00 00 00 00	Incr Delay (d2), s/veh	2.5	1.7	1.6	0.0	2.0	4.8	0.0	0.0	0.0	0.1	0.0	0.3
2.5 3.2 3.3 0.0 14.2 14.9 0.2 0.0 0.0 0.5 30.7 8.1 8.0 28.0 37.9 37.7 18.2 0.0 0.0 18.5 C A A C D D B A A B 137.3 1066 110 10.2 37.8 18.2 C A 6.2.6 67.4 12.0 50.5 6.0 6.5 6.0 40 6.5 3.0.0 87.5 30.0 16.0 6.5 C.4 21.3 5.3 8.0 35.7 C.5 2.4 C.5 2.1	Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2 8.1 8.0 28.0 37.9 37.7 18.2 0.0 0.0 18.5 1373 1056 10 B A A B A B B A B B A B B 10	%ile BackOfQ(50%),veh/ln		3.2	3.3	0.0	14.2	14.9	0.2	0.0	0.0	0.5	0.0	1.3
9.1.7 8.1 8.10 28.0 3.1.9 37.1 182 0.0 0.0 183. 1.0.2 1373 1056 10 B A A B B 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	Unsig. Movement Delay, s/veh			d	0	0		0	0	d	C	d	4
1373 1056 10 B A A B B 1373 1056 10 B B B B B B B B B B B B B B B B B B	LnGrp Delay(d), siven	30.7	- ×	0.0 0.0	0.82	51.9	2/./	18.2	0.0	0.0	0.0	0.0	19.2
1373 1056 10 10.2 37.8 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18	LNGrp LUS	ر	₹	∢	ر		۵	2	∢ !	∢	n	∢ .	۱۳
10.2 37.8 18.2 18.2 8.2 4 6 7 8 8 67.4 62.6 67.4 12.0 50.5 6.0 6.5 6.0 4.0 6.5 8.3 30.0 16.0 67.5 8.3 8.0 35.7 0.0 12.1 0.4 0.2 8.3	Approach Vol, veh/h		1373			1056			10			102	
2 4 6 7 8 67.4 62.6 67.4 120 50.5 6.0 6.5 6.0 4.5 30.0 87.5 30.0 16.0 67.5 2.4 21.3 5.3 80 35.7 0.0 12.1 0.4 0.2 8.3	Approach Delay, s/veh		10.2			37.8			18.2			19.0	
2 4 6 7 1 2 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3	Approach LOS		В			O			В			В	
67.4 62.6 67.4 12.0 6.0 6.5 6.0 4.0 30.0 87.5 30.0 16.0 2.4 21.3 5.3 8.0 0.0 12.1 0.4 0.2 C	Timer - Assigned Phs		2		4		9	7	∞				
6.0 6.5 6.0 4.0 30.0 87.5 30.0 16.0 2.4 21.3 5.3 8.0 0.0 12.1 0.4 0.2 C	Phs Duration (G+Y+Rc), s		67.4		62.6		67.4	12.0	50.5				
30.0 87.5 30.0 16.0 2.4 21.3 5.3 8.0 0.0 12.1 0.4 0.2 22.1	Change Period (Y+Rc), s		0.9		6.5		0.9	4.0	6.5				
2.4 21.3 5.3 8.0 0.0 12.1 0.4 0.2 22.1	Max Green Setting (Gmax), s		30.0		87.5		30.0	16.0	67.5				
22.1 C	Max Q Clear Time (g_c+I1), s		2.4		21.3		5.3	8.0	35.7				
ary	Green Ext Time (p_c), s		0.0		12.1		0.4	0.7	8.3				
	Intersection Summary												
	HCM 6th Ctrl Delay			22.1									
	HCM 6th LOS			U									

02/1/2/2019 CWTech BR

Smoke Tree Resort 2025 Total AM

4: Smoke Tree Access B & Lincoln Dr

+		
Smoke Tree Resori	2025 Total AM	

5: Lincoln Medical West & Lincoln Dr

Intersection Int Delay, sheh Movement EBT Lane Configurations Figure Vol, vehh 1137 Conflicting Peds, #hr Sign Control Free						
	EBR	WBL	WBT	NBL	NBR	
		r	\$	>		
	17	26	934	16	22	
	17	56	934	16	22	
	0	0	0	0	0	
	Free	Free	Free	Stop	Stop	
K1 Channelized -	None		None	7	None	
Storage Length -	٠	25	٠	0		
Veh in Median Storage, # 0	٠	٠	0	0	·	
	٠	٠	0	0		
5	8	06	06	06	8	
Heavy Vehicles, % 2	2	7	2	7	2	
Mvmt Flow 1263	19	29	1038	18	24	
Major/Minor Major1	Σ	Major2	≥	Minor1		
Conflicting Flow All 0	0	1282	0	1850	641	
Stage 1	٠	1	٠	1273		
Stage 2	٠		٠	217		
Critical Hdwy -	1	4.14	ì	6.84	6.94	
Critical Hdwy Stg 1	٠	•	٠	5.84		
Critical Hdwy Stg 2	•	1	ì	5.84	ì	
Follow-up Hdwy	٠	2.22	٠	3.52	3.32	
Pot Cap-1 Maneuver -	1	537	ŕ	99	417	
Stage 1	٠	٠	٠	227		
Stage 2	•	1	i.	525	ì	
Platoon blocked, %	٠		٠			
Mov Cap-1 Maneuver -	•	537	i.	62	417	
Mov Cap-2 Maneuver -	٠	٠	٠	160		
Stage 1	•	•	٠	215		
Stage 2	٠	٠	٠	525		
Approach EB		WB		NB		
HCM Control Delay, s 0		0.3		22.4		
HCM LOS				ပ		
Minor Lane/Major Mvmt N	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	249	1	•	537		
HCM Lane V/C Ratio	0.17	•	•	- 0.054		
HCM Control Delay (s)	22.4	1		12.1		
HCM Lane LOS	O	•		Ф		
HCM 95th %tile Q(veh)	9.0	•	٠	0.2		

Int Dolay choch	0						
III Delay, s/veri	D.4						
Movement	EBT	EBR WBL	WBL	WBT	NBL	NBR	
Lane Configurations	4₽		-	#	>		
Traffic Vol, veh/h	1142	18	45	953	9	6	
Future Vol, veh/h	1142	18	42	953	9	6	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	•	None	٠	None		None	
Storage Length	•	٠	22	٠	0		
Veh in Median Storage, #	0 #'	•	•	0	0		
Grade, %	0	٠		0	0		
Peak Hour Factor	8	06	06	06	8	06	
Heavy Vehicles, % Mvmt Flow	2 1269	20	2 47	1059	7	2 10	
Maior/Minor	Major1	2	Maior2	2	Minor1		
low All	0	0	0 1289	0	0 1903	645	
Stage 1					1279	,	
Stage 2	,	٠			624		
Critical Hdwy		٠	4.14		6.84	6.94	
Critical Hdwy Stg 1			•	•	5.84		
Critical Hdwy Stg 2	•	•	•	•	5.84		
Follow-up Hdwy	•	٠	2.22	٠	3.52	3.32	
Pot Cap-1 Maneuver	•	•	534		61	415	
Stage 1	•	٠	٠	٠	225		
Stage 2	1	•	•	•	496		
Platoon blocked, %	1	٠		1			
Mov Cap-1 Maneuver	1	1	534	•	26	415	
Mov Cap-2 Maneuver	•	٠	٠	٠	120		
Stage 1		•		•	202		
Stage 2	1		•	•	496		
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.5		20.9		
HCM LOS					O		
Minor I am I Maior I Maria		2	F	0		TOW	
MINOR Lane/Major MVML		NBLNI	EBI	EBK WBL		WBI	
Capacity (veh/h)		243	•	•	534		
HCM Lane V/C Ratio		690.0	٠	٠	- 0.087		
HCM Control Delay (s)		20.9	•		12.4		
HCM Lane LOS		O	٠	٠	ω		
HCM 95th %tile O(veh)		0.2	•	•	0.3		

Synchro 10 Report Page 6

02/12/2019 CivTech BR

Synchro 10 Report Page 5

02/12/2019 CivTech BR

Smoke Tree Resort 6: Lincoln Medical East & Lincoln Dr 2025 Total AM

Intersection							
Int Delay, s/veh	0.1						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	\$			*		R.	
Traffic Vol, veh/h	1138	=	9	995	0	6	
Future Vol, veh/h	1138	=	9	995	0	6	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	•	None	1	None	1	None	
Storage Length	•	•	•	•	•	0	
dian Storage,	0 #	1	1	0	0	•	
Grade, %	0	٠		0	0	٠	
Peak Hour Factor	06	8	06	06	06	8	
Heavy Vehicles, %	7	2	2	2	2	2	
Mvmt Flow	1264	12	7	1106	0	10	
Major/Minor M	Major1	2	Major2	2	Minor1		
Conflicting Flow All	0	0	1276	0		989	
Stage 1	٠	٠		•	•	٠	
Stage 2				,		,	
Critical Hdwy	•	1	4.14	1	1	6.94	
Critical Hdwy Stg 1	•	•	•	٠	•	٠	
Critical Hdwy Stg 2	1	1	1	1	1	1	
Follow-up Hdwy	٠	•	2.22	•	•	3.32	
Pot Cap-1 Maneuver	•	•	240	•	0	419	
Stage 1	١	•		•	0	•	
Stage 2	1	1	1	1	0	1	
Platoon blocked, %	٠	٠		٠			
Mov Cap-1 Maneuver	•	1	240	•	1	419	
Mov Cap-2 Maneuver	٠	•	1	•	1	٠	
Stage 1	1	1	1	•	1	•	
Stage 2	•	•	•	•	•	٠	
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.1		13.8		
HCM LOS					В		
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		419	1	1	540	•	
HCM Lane V/C Ratio		0.024	•	٠	0.012	٠	
HCM Control Delay (s)		13.8			11.8		
HCM Lane LOS		മ	•	•	മ	٠	
HCM 95th %tile Q(veh)		0.1	1	1	0	1	

02/12/2019 Synchro 10 Report CivTech BR Page 7

02/12/2019 CivTech BR

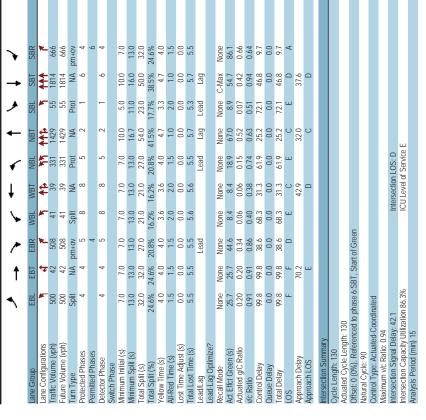
Synchro 10 Report Page 8

Smoke Tree Resort 2025 Total AM

7: Apartment Drwy & Lincoln Dr

Movement EBI EBI EBI Tadii Vol, vehh 29 1082	CDD										
29 29 29 Free - - - - - - - - - - - - - - - - - -	EDN	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
29 29 0 Free - 25 1e, # -		K-	₩			4		r		¥L.	
29 Free - 25 Pe, # - 90	38	20	930	1	99	0	33	9	0	14	
25 Free - 25 e, # - 90	38	20	930	Ξ	29	0	33	9	0	14	
Free - 25 Pe, # - 90 2	0	0	0	0	0	0	0	0	0	0	
25 25 Storage,# - or 90 % 2		Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
storage,# - or 90	NOIR	25		NO.			NOILE.	· c			
. 90	٠	,	C	٠		C		'	C	, ,	
90	ľ		0			0			0		
2	06	06	06	06	06	06	06	06	06	06	
4	2	2	2	7	2	2	2	2	2	7	
Wvmt Flow 32 1202	42	22	1033	12	62	0	37	7	0	16	
Majori	-	Major2		2	Minor1		2	Minor?			
No All	c	1244	c	c	1848	2376	669	1748	ľ	523	
					1287	1287		1083		'	
Stage 2	'				261	1089	•	999			
Critical Hdwy 4.14 -		4.14			7.54	6.54	6.94	7.54	٠	6.94	
Critical Hdwy Stg 1					6.54	5.54	•	6.54			
Critical Hdwy Stg 2	•	•		•	6.54	5.54	٠	6.54	•		
Follow-up Hdwy 2.22 -	•	2.22	•	•	3.52	4.02	3.32	3.52	•	3.32	
Pot Cap-1 Maneuver 661	•	222			~ 46	34	430	22	0	466	
Stage 1	•	,		,	174	233	٠	232	0		
Stage 2	1	1	1	ì	480	290	1	416	0	ì	
Platoon blocked, %	•			٠							
Mov Cap-1 Maneuver 661 -	•	555		1	~ 42	31	430	47	1	466	
Mov Cap-2 Maneuver	•	•		٠	~ 42	31	٠	47	•		
Stage 1	•	•		•	166	222	•	221	•		
Stage 2	•	1	1	1	447	278	•	362	1		
Approach EB		WB			NB			SB			
HCM Control Delay, s 0.3		0.2		↔	\$ 428.6			36.9			
HCM LOS					ш			ш			
П	i	i	0							ı	
r Mvmt NBL	EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2	BLn1S	BLn2			
63	199	•		222	1	•	4/	499			
1.57	\sim	٠	٠	0.04	٠	•	0.142 0.031	0.031			
HCM Control Delay (s) \$ 428.6	10	•	•	11.8	•	•	93.9	12.4			
HCM Lane LOS	В	•	1	В	1	•	ш	В			
HCM 95th %tile Q(veh) 8.7	0.2	•	•	0.1	1	1	0.5	0.1			
Notes											

Smoke Tree Resort 2025 Total AM


Smoke Tree Resort 2025 Total AM	sort										∞	AJ's Drv	8: AJ's Drwy & Lincoln Dr HCM 6th TWSC
Intersection													
Int Delay, sheh	1.4												
Movement	EBL	EBT	EBR WBL WBT WBR NBL	WBL	WBT	WBR		NBT	NBR	SBL	SBT	SBR	
Lane Configurations	۴	₹		-	₹			4		-		W_	
Traffic Vol, veh/h	က	1060	09	48	943	6	7	0	46	2	_	14	
Future Vol, veh/h	m	1060	09	48	943	6	7	0	46	2	-	14	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free Free	Free	Stop	Stop Stop		Stop	Stop	Stop	
RT Channelized		1	None	1	1	None	1		None			None	
Storage Length	25	,	,	25	•	•	•	•	•	0	•	0	
Veh in Median Storage, #	#	0	1	,	0	•		0	1		0		
Grade, %		0	•	٠	0	٠	٠	0	٠	٠	0		
Peak Hour Factor	06	8	06	8	06	8	06	8	8	06	8	06	
Heavy Vehicles, %	2	2	2	2	2	2	2	7	2	2	2	2	
Mvmt Flow	3	1178	19	23	1048	10	00	0	21	9	-	16	

	529			6.94		ı	3.32	464				464												
	2410	1159	1251	6.54	5.54	5.54	4.02	32	268	242		53	59	243	241									
MILIOIZ	1754	1159	262	7.54	6.54	6.54	3.52	54	208	458		44	44	207	402	SB	35.1	ш	SBLn2	464	0.031	12.5	В	0.1
=	623	1	•	6.94	٠	1	3.32	429	•	•		429		•	•				EBR WBL WBT WBRSBLn1SBLn2	44	0.126 0.031	98.3	ш	0.4
	2382	1218	1164	6.54	5.54	5.54	4.02	34	251	267		31	31	250	242				WBR 3	1		1	1	1
MILIO	1849	1218	631	7.54	6.54	6.54	3.52	46	191	436		40	40	190	380	NB	32.6	۵	WBT	1		1	'	1
	0	1			•	1			•			•							WBL	222	960.0	12.2	В	0.3
	0	1			•	1						1							EBR	,		Ť	'	•
Majorz	1245	1		4.14	•	1	2.22	222	•	•		222			•	WB	9.0		EBT			1	'	1
	0	1			•	1			•			•							EBL	654	0.313 0.005	10.5	В	0
	0	1	'	•	•	1		•	•	•		1		•	'				NBLn1	188	0.313	32.6		1.3
Major I	1058		ľ	4.14			2.22	654				654				EB	0		ŧ					_
Major/Minor	Conflicting Flow All	Stage 1	Stage 2	Critical Hdwy	Critical Hdwy Stg 1	Critical Hdwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Stage 2	Platoon blocked, %	Mov Cap-1 Maneuver	Mov Cap-2 Maneuver	Stage 1	Stage 2	Approach	HCM Control Delay, s	HCM LOS	Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	HCM Control Delay (s)	HCM Lane LOS	HCM 95th %tile Q(veh)

Synchro 10 Report Page 9 02/12/2019 CivTech BR

Smoke Tree Resort 2025 Total AM

9: Scottsdale Rd & Lincoln Dr

9: Scottsdale Rd & Lincoln Dr Splits and Phases:

√

02/12/2019 CivTech BR

Smoke Tree Resort 2025 Total AM

9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

Morement		1	†	<u> </u>	/	ţ	1	•	—	•	٠	→	•
500 44 7 44 45 44<	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
500 42 568 41 39 52 331 1429 43 55 1814 500 42 568 41 39 52 331 1429 43 55 1814 100 1 0	-ane Configurations	je-	₩	*	<u>, </u>	₩		K.	4413		×	444	¥.
500 42 508 41 39 52 331 1429 43 55 1814 0	raffic Volume (veh/h)	200	45	208	41	36	25	331	1429	43	22	1814	999
1,00	uture Volume (veh/h)	200	45	208	41	36	25	331	1429	43	22	1814	999
1,00	nitial Q (Qb), veh	0	0	0	0	0	0	0	0	0 9	0 9	0	0 0
100	ed-Bike Adj(A_pb1)	8.1		8.6	8:		8.	00.1		00.1	00.1		00.1
1870 1870	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1:00	1.00	1.00	1.00	1.00
1870 1870	Work Zone On Approach		2			2		į	8			0 1	
590 0 564 46 43 58 188 48 6 1 70 29 0 <	Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
0.90 0.90 <td< td=""><td>Adj Flow Rate, veh/h</td><td>230</td><td>0</td><td>564</td><td>46</td><td>43</td><td>28</td><td>368</td><td>1588</td><td>48</td><td>61</td><td>2016</td><td>740</td></td<>	Adj Flow Rate, veh/h	230	0	564	46	43	28	368	1588	48	61	2016	740
2 2	eak Hour Factor	0.90	0.00	0.00	0.90	0.90	0.90	0.00	0.90	0.00	0.90	0.90	0.90
726 0 518 95 95 88 425 2145 66 79 140 3863 0.00 518 95 95 88 425 2042 0.04 0.34 3863 0.0 1588 1781 1777 1585 3456 5093 159 1781 1702 1 2112 0.0 265 3.3 3.1 4.7 136 341 44 44.3 2 212 0.0 265 3.3 3.1 4.7 136 34.1 34.1 44 44.3 44.3 212 0.0 265 3.3 3.1 4.7 136 34.1 34.1 44.4 44.3 </td <td>Percent Heavy Veh, %</td> <td>5</td> <td>7</td> <td>5</td> <td>7</td> <td>5</td> <td>2</td> <td>7</td> <td>5</td> <td>7 !</td> <td>5</td> <td>2</td> <td>2</td>	Percent Heavy Veh, %	5	7	5	7	5	2	7	5	7 !	5	2	2
0.07 0.08 0.09 0.05 0.06 0.05 0.06 0.03 154 1781 184 343 356 166 575 61 2016 576 62 63 46 46 43 58 346 1061 575 61 2016 506 509 1506 75 61 2016 506 500 1701 700 70	Jap, veh/h	726	0 0	518	95	95	£ 5	425	2145	65	6/	1740	863
590 1989 1/81 1/12 1/12 1/14 4/14 4/13 1/14 4/14 4/13 1/14 4/14 4/13 1/14 4/14 4/13 1/14 4/14	Arrive On Green	0.07	0.00	0.07	0.02	0.05	0.05	0.12	0.42	0.42	0.04	0.34	0.34
1781 0 564 46 43 58 106 576 106 1702 1406 1702 1406 1702 1406 1702 1406 1702 1406 1702 140 </td <td>sat Flow, ven/n</td> <td>3563</td> <td>О</td> <td>1585</td> <td>18/1</td> <td>///</td> <td>1585</td> <td>3456</td> <td>5093</td> <td>154</td> <td>18/1</td> <td>2106</td> <td>1585</td>	sat Flow, ven/n	3563	О	1585	18/1	///	1585	3456	5093	154	18/1	2106	1585
781 781 777 1885 772 178 1702 179 179 179 179 170 </td <td>srp Volume(v), veh/h</td> <td>280</td> <td>0</td> <td>264</td> <td>46</td> <td>43</td> <td>200</td> <td>368</td> <td>1061</td> <td>575</td> <td>19</td> <td>2016</td> <td>740</td>	srp Volume(v), veh/h	280	0	264	46	43	200	368	1061	575	19	2016	740
212 0.0 26.5 3.3 3.1 4.7 13.6 34.1 34.1 4.4 44.3 212 0.0 26.5 3.3 3.1 4.7 13.6 34.1 34.1 44.4 44.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 7.8 0 518 95 86 425 143.4 776 77 1740 7.8 0 518 248 0.48 0.48 0.45 0.48 0.76 0.78 1.16 74 0.78 1.16 7.8 0 518 20.1 1.00 </td <td>srp Sat Flow(s),veh/h/ln</td> <td>1781</td> <td>0</td> <td>1585</td> <td>1781</td> <td>1777</td> <td>1585</td> <td>1728</td> <td>1702</td> <td>1843</td> <td>1781</td> <td>1702</td> <td>1585</td>	srp Sat Flow(s),veh/h/ln	1781	0	1585	1781	1777	1585	1728	1702	1843	1781	1702	1585
212 0.0 26.5 3.3 3.1 4.7 13.6 34.1 34.1 44.4 44.4 44.4 44.3 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 726 0.518 95 85 4.25 1434 776 79 1740 0.81 0.00 1.09 0.48 0.45 0.68 0.7 0.7 1.00	2 Serve(g_s), s	21.2	0.0	26.5	3.3	3.1	4.7	13.6	34.1	34.1	4.4	44.3	44.3
1,00	Sycle Q Clear(g_c), s	21.2	0.0	26.5	3.3	3.1	4.7	13.6	34.1	34.1	4.4	44.3	44.3
726 0 518 95 95 85 425 1434 776 79 1740 0.81 0.00 1.00 0.46 0.45 0.68 0.87 1434 776 243 1740 726 0.81 0.81 0.00 1.00 1.00 1.00 1.00 1.00	Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.08	1.00		1.00
0.81 0.00 1.09 0.48 0.45 0.68 0.87 0.74 0.74 0.78 1.16 726 0.30 0.38 1.02 1.02 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.0	ane Grp Cap(c), veh/h	726	0	218	95	95	82	425	1434	776	79	1740	863
726 0 518 211 210 188 572 1434 776 243 1740 133 0.33 0.33 1.00 1.00 1.00 1.00 1.00	//C Ratio(X)	0.81	0.00	1.09	0.48	0.45	0.68	0.87	0.74	0.74	0.78	1.16	0.86
0.33 0.33 0.33 1.00 1.00 1.00 1.00 1.00	wail Cap(c_a), veh/h	726	0	518	211	210	188	572	1434	176	243	1740	863
1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00	ICM Platoon Ratio	0.33	0.33	0.33	1.00	1:00	1:00	1.00	1.00	1.00	1.00	1.00	1.00
882 00 499 598 897 604 559 316 316 615 429 5 65 00 657 14 12 36 83 18 34 60 783 1 00 00 00 00 00 00 00 00 00 00 00 00 00	Jpstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
65 00 657 14 12 36 83 18 34 60 783 100 00 00 00 00 00 00 00 00 00 00 00 00	Jniform Delay (d), s/veh	58.2	0.0	49.9	29.8	26.7	60.4	55.9	31.6	31.6	61.5	45.9	23.6
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ncr Delay (d2), s/veh	6.5	0.0	65.7	1.4	1.2	3.6	8.3	1.8	3.4	0.9	78.3	10.7
10.9 0.0 25.4 1.5 1.4 2.0 6.4 14.3 15.8 2.1 31.0 6.4.7 0.0 115.6 61.2 60.9 64.0 64.2 33.5 35.0 67.5 121.1 E A F E E C C E F F 115.4 17.4 20.0 64.2 33.5 35.0 67.5 121.1 1.2 4 5 6 8 8 1.1 1.0 60.5 32.0 21.5 50.0 12.6 5.6 11.0 60.5 32.0 21.5 50.0 12.6 6.4 36.1 28.5 15.6 46.3 6.7 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0
154	%ile BackOfQ(50%),veh/ln	•	0.0	25.4	1.5	1.4	2.0	6.4	14.3	15.8	2.1	31.0	27.2
64.7 0.0 115.6 61.2 0.09 64.0 64.2 35.5 35.0 6/55 12/11 E A F E E E C C E F F C C E E F C C E E F C C E E F C C E E F C C E E F C C C E E E F C C C E E F C C C E E F C C C E E F C C C E E F C C C E E E E	Jnsig. Movement Delay, s/veh		d		3	9				L	į	1	
1154	nGrp Delay(d),s/ven	64.7	0.0	1.15.6	2.10	60.9	04.0	64.2	33.5	35.0	6/.5	1.121	34.3
154	norp LOS	ш	A	-	ш	1 L	ш	ш	0	د	ш	T 100	اد
870 02.2 37.5 1	Approach Vol. vervn		1134			14/			2004			/187	
11.0 605 320 215 500 1 *5.3 57 55 55 57 7 *64 361 285 156 463 00 2.3 0.0 0.4 0.0	Approach Delay, siven		89.0			7:70			39.5			7.14	
11, 2 4 5 6 11,0 605 320 215 500 1 18 483 265 215 443 1 64 361 285 156 463 0 00 23 00 04 00	Applicacii EO3		-			_			۵			-	
11.0 605 32.0 21.5 50.0 1 -5.3 5.7 5.5 5.5 5.7 -6.4 36.1 28.5 15.6 46.3 0.0 2.3 0.0 0.4 0.0 76.0	imer - Assigned Phs	_	2		4	2	9		8				
*5.3 5.7 5.5 5.5 5.7 *18 48.3 26.5 21.5 44.3 1 6.4 36.1 28.5 15.6 46.3 0.0 2.3 0.0 0.4 0.0 76.0	Phs Duration (G+Y+Rc), s	11.0	60.5		32.0	21.5	20.0		12.6				
718 48.3 26.5 21.5 44.3 6.4 36.1 28.5 15.6 46.3 0.0 2.3 0.0 0.4 0.0 76.0	Change Period (Y+Rc), s	* 5.3	5.7		5.5	5.5	5.7		9.6				
64 361 285 156 463 00 23 00 04 0.0 760	Aax Green Setting (Gmax), s		48.3		26.5	21.5	44.3		15.4				
c), s 0.0 2.3 0.0 0.4 my 76.0 F F	Max Q Clear Time (g_c+I1), s		36.1		28.5	15.6	46.3		6.7				
ıry	Sreen Ext Time (p_c), s	0.0	2.3		0.0	0.4	0.0		0.2				
	ntersection Summary												
	HCM 6th Ctrl Delay			76.0									
	HCM 6th LOS			ш									

02/12/2019 CivTech BR

Synchro 10 Report Page 11

Smoke Tree Resort 2025 Total AM

10: Quail Run Rd & Access A HCM 6th TWSC

Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	>		÷			₩	
Traffic Vol, veh/h	0	_	0	0		0	
Future Vol, veh/h	0	-	0	0		0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop Stop	Free	Free	Free	Free	
RT Channelized		None	•	None		None	
Storage Length	0		•	•			
Veh in Median Storage, #	0 #	•	0	•	1	0	
Grade, %			0		ľ	0	
Peak Hour Factor	8	06	06	06	8	8	
Heavy Vehicles, %	2		2	2	2	2	2
Mvmt Flow	0		0	0	_	0	
Majorffdinor	Minord		Majort		CroicM		
		ľ	Major I		zin(a)		
Conflicting Flow All	7	0	>	>	0	>	
Stage 1	0	•	•	•			
Stage 2	2		•	•	•		
Critical Hdwy	6.42	6.22	1	1	4.12		
Critical Hdwy Stg 1	5.42		•	•			
Critical Hdwy Stg 2	5.42	•	1	1	1	1	
	3.518	3.318	•	•	2.218		
neuver	1021	•	•	•	1	1	
Stage 1	'	•	,	,	•	'	
Stage 2	1021	•	•	•	1	1	
			•	٠		Ť	
	1021	•	,	•		,	
neuver	1021	•			•		
Stage 1	1	•	1	1	1	Ť	
Stage 2	1021	•	'	'		'	
Approach	WB		NB		SB		
HCM Control Delay, s			0				
HCM LOS	1						
Minor Lane/Major Mvmt		NBT	NBRWBLn1	VBLn1	SBL	SBT	
Capacity (veh/h)							
HCM Lane V/C Ratio		•	•	•			
HCM Control Delay (s)		•	•	•			
HCM Lane LOS		•	•	•	'		

Synchro 10 Report Page 12 02/12/2019 CivTech BR

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lams for furning movement.

"HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Smoke Tree Resort

Smoke Tree Resort 2025 Total AM Mitigated	ated							9: So	ottsda	9: Scottsdale Rd & Lincoln Dr	Timings
	4	†	~	\	ţ	•	-	۶	-	•	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	*	₹	¥.	r	₽	F	4413	۳	444	¥c_	
Traffic Volume (vph)	200	42	208	41	36	331	1429	22	1814	999	
Future Volume (vph)	200	42	208	41	39	331	1429	22	1814	999	
Turn Type	Split	NA	vo+mq	Split	NA	Prot	NA	Prot	NA	hm+ov	
Protected Phases	4	4	2	∞	∞	2	2	-	9	4	
Permitted Phases			4							9	
Detector Phase	4	4	2	∞	∞	2	7	-	9	4	
Switch Phase											
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	10.0	2.0	10.0	7.0	
Minimum Split (s)	13.0	13.0	13.0	13.0	13.0	13.0	16.7	11.0	16.0	13.0	
Total Split (s)	30.0	30.0	21.0	19.0	19.0	21.0	28.0	13.0	20.0	30.0	
Total Split (%)	25.0%	25.0%	17.5%	15.8%	15.8%	17.5%	48.3%	10.8%	41.7%	25.0%	
Yellow Time (s)	4.0	4.0	4.0	3.6	3.6	4.0	4.7	3.3	4.7	4.0	
All-Red Time (s)	1.5	1.5	1.5	2.0	2.0	1.5	1.0	2.0	1.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	9.9	9.9	5.5	2.7	5.3	5.7	5.5	
Lead/Lag			Lead			Lead	Lag	Lead	Lag		
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	None	None	None	None	С-Мах	None	
Act Effct Green (s)	23.8	23.8	40.7	8.2	8.2	16.9	26.7	8.2	48.8	78.3	
Actuated g/C Ratio	0.20	0.20	0.34	0.07	0.07	0.14	0.50	0.07	0.41	0.65	
v/c Ratio	0.90	0.90	0.89	0.38	0.37	0.76	0.65	0.50	0.98	0.63	
Control Delay	77.0	77.0	35.4	62.1	28.9	60.3	25.1	8.79	50.5	8.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	77.0	77.0	35.4	62.1	28.9	60.3	25.1	67.8	50.5	8.4	
ros	ш	ш	۵	ш	ပ	ш	ပ	ш	Ω	۷	
Approach Delay		26.9			39.3		31.5		39.8		
Approach LOS		ш			О		O		D		
Intersection Summary											
Cycle Length: 120											
Actuated Cycle Length: 120											
Offset: 0 (0%), Referenced to phase 6:SBT, Start of Green	phase 6:3	SBT, Sta	rt of Gree	п							
Natural Cycle: 90											
Control Type: Actuated-Coordinated	inated										
Maximum v/c Ratio: 0.98						9					
Intersection Signal Delay: 40.3	3 06 20%			⊆ ⊆	Intersection LOS: D	LOS: D	u				
Analysis Period (min) 15	00.370			5	O Level o	DCIVICO I	u				

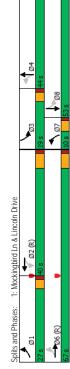
● ▼ Ø6 (R) \$Ø **₹** 02/11/2019 CivTech BR

Smoke Tree Resort 2025 Total AM Mitigated

9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

Training Configurations	•	,	_	L	٠	+	¥
Secondary Color	TOW		TOIN	NDD	CDI	CDT	CDD
Section Sect	WBI		INBI	NBK	SBL	SBI	SBK
500 42 508 41 39 500 42 508 41 39 100		£	<u>+</u> +		-	+++	-
) 500 42 508 41 39 100 100 100 100 cch 1100 100 100 100 cch 1200 100 100 100 cch 1300 100 100 100 cch 2 2 2 2 2 cch 2 2 2 2 2 cch 3563 0 564 46 43 cch 3563 0 606 006 cch 2 2 2 2 2 cch 3563 0 606 006 cch 2 2 2 2 cch 4 4 43 cch 4 4 43 dn 1781 0 1885 1781 1777 cch 2 2 2 2 cch 2 2 2 2 cch 3563 0 606 006 cch 2 2 2 2 cch 3563 0 606 cch 2 2 2 2 cch 3563 0 1885 1781 1777 cch 2 2 2 2 cch 2 2 2 c		52 331	1429	43	22	1814	999
ach 1.00 1.00 1.00 1.00 ach 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		co	1429	43	22	1814	999
ach 100 100 100 100 100 ach 1870 1870 1870 1870 1870 1870 1870 1870	0		0	0	0	0	0
ach 100 1,00 1,00 1,00 1,00 1,00 1,00 1,00				1.00	1.00		1.00
sch 1870 1870 1870 1870 1870 1870 1870 1870	1.00	1.00 1.00	1.00	1.00	1.00	1.00	1.00
1870 1870 1870 1870 1870 1870 1870 1870	No		No No			No	
590 0 564 46 43 090 0,90 0,90 0,90 0,90 0,90 0,90 0,90	1870 1	_	1870	1870	1870	1870	1870
6 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	43		1588	48	61	2016	740
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	06:0	06.0 06.0	06:0	06:0	06:0	06:0	0.90
1227	2	2 2	2	2	2	2	2
0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00	103		2286	69	78	1885	606
3563 0 1585 1781 1777 7 559 0 564 46 43 41 1771 1771 1771 1771 1771 1771 177	90:0	0.06 0.12	0.45	0.45	0.04	0.37	0.37
Mn 1781 0 1585 1781 1777 1779 190 0 1585 1781 1777 1779 190 0.0 24.5 3.0 2.8 190 0.0 24.5 3.0 2.8 190 0.0 24.5 3.0 2.8 190 0.0 24.5 3.0 2.8 190 0.0 1.00 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 0.		1585 3456	5093	154	1781	2106	1585
1781 0 1885 1781 1777 1791 190 0.0 24,5 3.0 2.8 190 0.0 24,5 3.0 2.8 190 0.0 24,5 3.0 2.8 190 0.0 24,5 3.0 2.8 190 0.0 24,5 3.0 2.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	43		1061	575	61	2016	740
1900 0.0 24.5 3.0 2.8 19.0 0.0 24.5 3.0 2.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	1777	585 1728	1702	1843	1781	1702	1585
190 0.0 24.5 3.0 2.8 1.00	2.8		30.0	30.0	4.1	44.3	44.3
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	2.8		30.0	30.0	4.1	44.3	44.3
0.81 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0				0.08	1.00		1.00
0.81 0.00 1.09 0.45 0.42 1.20 1.00 1.00 1.00 1.00 1.00 1.00 1.0	103		1528	827	78	1885	606
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.42	_	69.0	69.0	0.78	1.07	0.81
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	198		1528	827	114	1885	606
1,00 000 100 100 100 100 100 100 100 100	1.00		1.00	1.00	1.00	1.00	1.00
45.5 0.0 40.4 54.7 54.6 64.4 0.0 66.5 1.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.00		1.00	1.00	1.00	1.00	1.00
6.4 0.0 66.5 1.1 1.0 0.0 0.0 0.0 0.0 9.0 0.0 24.6 1.4 1.3 52.0 0.106.9 55.8 55.6 D A F E E E 1154 147 78.8 56.6 I 12 2 4 5 10.6 59.6 30.0 20.1 5.3 5.7 5.2 5.5 6.1 32.0 24.5 15.5 6.1 32.0 24.5 16.5 6.1 32.0 24.0 0.1	54.6		26.5	26.5	26.8	37.8	20.4
00 00 00 00 00 00 00 00 00 00 00 00 00	1.0	_	1.2	2.1	10.4	42.2	7.9
9.0 0.0 24.6 1.4 1.3 52.0 0.0 106.9 55.8 55.6 D A F E E 115.4 1.7 115.4 56.6 1.0 59.6 30.0 20.1 1.0 59.6 30.0 20.1 1.1 52.3 24.5 15.5 6.1 32.0 26.5 14.6 0.0 2.4 0.0 0.1	0.0	0.0 0.0	0:0	0:0	0.0	0:0	0.0
220 0.0 106.9 55.8 55.6 D A F E E E E E E T 1154 147 147 147 147 147 15.3 5.7 5.3 5.7 5.3 5.7 5.3 5.7 5.3 5.7 5.3 5.7 5.3 5.7 5.3 5.7 5.3 5.7 5.3 5.7 5.3 5.7 5.3 5.7 5.8 5.5 5.5 6.1 3.2 0 2.4 0.0 0.1 5.8 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	1.4 1.3	1.8 6.3	12.2	13.4	2.1	25.4	24.5
220 0.0 106.7 20.8 20.0 1.0 1.154 F E E E E E E E E E E E E E E E E E E	, ,		, 10		01/		000
1154 147 18.8 56.6 1	00.00	57.9 07.3	0.12	0.82	7./0	80.0	28.3
1 2 4 5 5 1 1 1 2 5 1 2 1 1 2 1 2 1 2 1 2 1 2		J	2004)	_	2817	
1 2 4 5 10.6 59.6 30.0 20.1 5.3 5.7 5.3 5.7 5.5 5.5 6.1 32.0 24.5 15.5 0.0 2.4 0.0 0.1 58.2 E	26.6		35.2			66.2	
10.6 59.6 30.0 20.1 *5.3 5.7 5.5 55 *7.7 52.3 24.5 15.5 6.1 32.0 2.4 5 *6.1 32.0 24.5 15.5 8.0 0.1 58.2 E	Е		٥			ш	
10.6 59.6 30.0 20.1 *5.3 5.7 5.5 5.5 *7.7 52.3 24.5 15.5 6.1 32.0 26.5 14.6 0.0 2.4 0.0 0.1 58.2 E	4 5	9	00				
*5.3 5.7 5.5 5.5 *7.7 52.3 24.5 15.5 6.1 32.0 26.5 14.6 0.0 2.4 0.0 0.1 58.2 E	20.1	50.0	12.5				
7.7 52.3 24.5 15.5 6.1 32.0 26.5 14.6 0.0 2.4 0.0 0.1 58.2 E	5.5	5.7	9.9				
6.1 32.0 26.5 14.6 0.0 2.4 0.0 0.1 58.2 E E	15.5	44.3	13.4				
c), s 0.0 2.4 0.0 0.1 ry 58.2 E	14.6	46.3	6.3				
ıry	0.1	0.0	0.2				
Notes							

Synchro 10 Report Page 10


Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for furning movement.
*HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

02/11/2019
CVTech BR

Smoke Tree Resort 2025 Total PM

1: Mockingbird Ln & Lincoln Drive Timings

→	SBT	æ	25	25	NA	∞		œ		7.0	33.5	53.0	40.8%	4.0	2.5	0.0	6.5	Lag	Yes	None	21.9	0.17	0.63	27.4	0.0	27.4	ပ	31.1	ပ										
٠	SBL	F	0/	70	pm+pt	n	∞	က		3.5	8.0	19.0	14.6%	3.0	1.0	0.0	4.0	Lead	Yes	None	26.4	0.20	0.30	42.9	0.0	42.9	۵											U	
←	NBT	£,	89	89	NA	4		4		7.0	33.5	44.0	33.8%	4.0	2.5	0.0	6.5	Lag	Yes	None	11.8	0.09	0.57	61.9	0.0	61.9	ш	59.9	ш								LOS: B	Service	
•	NBL	<u>r</u>	∞	80	pm+pt	7	4	7		2.0	6.5	10.0	7.7%	3.5	1.0	0.0	4.5	Lead	Yes	None	18.2	0.14	90:0	37.6	0.0	37.6	٥						reen				Intersection LOS: B	ICU Level of Service C	
ţ	WBT	₩.	1023	1023	NA	2		7		15.0	27.0	40.0	30.8%	4.5	1.5	0.0	0.9	Lag	Yes	C-Max	69.2	0.53	0.65	19.9	0.0	19.9	В	19.6	В				Start of (Ϊ́	⊴	
\	WBL	<i>y</i> -	27	27	Perm		2	2		15.0	27.0	40.0	30.8%	4.5	1.5	0.0	0.9	Lag	Yes	C-Max	69.2	0.53	0.12	10.7	0.0	10.7	В						16:EBTL,						
†	EBT	₩.	928	928	NA	9		9		15.0	27.0	67.0	51.5%	4.5	1.5	0.0	0.9			C-Max	93.6	0.72	0.43	9.2	0.0	9.2	A	13.5	В				WBTL and						
4	EBL	je-	267	267	pm+pt	_	9	-		3.5	8.0	27.0	20.8%	3.0	1.0	0.0	4.0	Lead	Yes	None	92.6	0.74	0.73	29.7	0.0	29.7	ပ						phase 2:\		inated		.0	nn 72.2%	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Recall Mode	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Queue Delay	Total Delay	LOS	Approach Delay	Approach LOS	Intersection Summary	Cycle Length: 130	Actuated Cycle Length: 130	Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green	Natural Cycle: 90	Control Type: Actuated-Coordinated	Maximum v/c Ratio: 0.73	Intersection Signal Delay: 19.5	Intersection Capacity Utilization 72.2%	Analysis Period (min) 15

02/12/2019 CivTech BR

Smoke Tree Resort 2025 Total PM

1: Mockingbird Ln & Lincoln Drive HCM 6th Signalized Intersection Summary

Fell EBT EBT EBT WBL WBT WBR NBL NBT		\	Ť	/-	-		,	_	-	_		-	•
10 10 10 10 10 10 10 10	Movement	EBI	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
1, 2, 6, 6, 8, 8, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Lane Configurations	F	₩		F	₽		r	2		r	2	
1, 267 958 32 27 1023 71 8 68 21 70 52 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 1, 00 297 1064 36 30 1137 79 9 76 23 78 58 297 1064 36 30 1137 79 9 76 23 78 58 297 1064 81 33 1914 13 106 190 0.90 0.90 297 1064 81 33 1914 13 106 190 0.90 0.90 297 1064 81 33 1914 13 106 190 0.90 0.90 297 1064 81 33 1914 133 106 190 0.90 0.90 297 1064 81 33 1914 133 106 190 0.90 0.90 298 297 204 81 337 1914 133 106 190 0.90 298 290 0.90 0.90 0.90 0.90 0.90 0.90 0.90 290 0.90 0.90 0.90 0.90 0.90 0.90 0.90 291 178 178 137 1849 513 1777 1828 1781 0.14 0.14 0.05 0.17 291 178 178 178 178 178 178 178 178 178 1.00 292 2 2 2 2 2 2 2 293 294 295 206 209 0.00 0.00 0.00 294 178 178 178 178 178 178 1.00 295 178 178 178 178 178 1.00 1.00 1.00 1.00 295 178 178 178 1.00 1.00 1.00 1.00 1.00 1.00 295 178 178 178 1.00 1.00 1.00 1.00 1.00 1.00 295 178 178 1.00 1.00 1.00 1.00 1.00 1.00 1.00 296 178 178 178 1.00 1.00 1.00 1.00 1.00 1.00 297 297 296 296 296 296 296 296 296 298 199 190 296	Traffic Volume (veh/h)	267	958	32	27	1023	71	· ω	89	21	70	25	169
100	Future Volume (veh/h)	267	958	32	27	1023	71	∞	89	21	70	25	169
100	Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
1,00	Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1:00
No	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1870 1870	Work Zone On Approach		9			2			2			2	
297 1064 36 30 1137 79 9 76 23 78 58 60 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0	Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
ch, % 200 0.90 0.90 0.90 0.90 0.90 0.90 0.90	Adj Flow Rate, veh/h	297	1064	36	30	1137	79	6	76	23	78	28	188
th, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Peak Hour Factor	0.90	0.00	0.90	0.00	06:0	06:0	06.0	06:0	06:0	06.0	0.00	0.00
1841 2404 81 337 1914 133 106 190 58 257 67 1841 3507 169 0.69 0.69 0.69 0.63 0.38 0.38 0.31 0.01 10.14 0.14 0.14 0.05 0.17 1841 3507 1849 513 3771 1828 1781 0 1795 1781 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
1781 3567 1791 1869 1792 1791 1791 3689 1791 1792 1791 1869 1791 1791 1869 1792 1791 1791 1869 1792 1791 1791 1869 1792 1791 1791 1791 1791 1791 1791 1792 1791 1792 1791	Cap, veh/h	347	2404	81	337	1914	133	106	190	28	257	19	217
1781 3507 119 513 3371 234 1781 1378 417 1781 388 1781 1781 239 561 30 599 617 9 0 0 99 78 0 0 618 1781 1781 1284 1781 1284 1781 1284 1781 1284 1781 1284 1781 1284 1781 1284 1381 100 0.0	Arrive On Green	0.0	69.0	69.0	0.38	0.38	0.38	0.01	0.14	0.14	0.05	0.17	0.17
1781 1782 1782 1894 1994	Sat Flow, veh/h	1781	3507	119	513	3371	234	1781	1378	417	1781	388	1257
1781 1777 1849 513 1777 1828 1781 0 1795 1781 0 1791 1777 1849 513 1777 1828 1781 0 1795 1781 0 1781 1781 1782 25 351 351 0 6 0 0 0 655 47 0 0 65 47 0 0 65 47 0 0 65 47 0 0 65 47 0 0 65 67 0 67 67 67 67 67 67	Grp Volume(v), veh/h	297	539	561	30	266	617	6	0	66	78	0	246
8.6 17.8 17.8 5.0 35.1 35.1 0.6 0.0 6.5 4.7 0.0 1.00 1.00 0.6 1.00 0.6 1.00 0.0	Grp Sat Flow(s),veh/h/ln	1781	1777	1849	513	1777	1828	1781	0	1795	1781	0	1644
86 17.8 17.8 7.5 35.1 35.1 0.6 0.0 65 47 0.0 1.0 1.00 0.06 1.00 0.06 1.00 0.01 0.02 1.00 0.03 1.00 0.06 1.00 0.03 1.00 0.03 1.00 0.06 0.04 0.02 1.00 0.08 0.04 0.04 0.04 0.03 0.00 0.04 0.03 0.00 0.00	2 Serve(g_s), s	9.8	17.8	17.8	2.0	35.1	35.1	9:0	0.0	6.5	4.7	0.0	18.9
100 100 100 100 100 100 100 100 100 100	Cycle Q Clear(g_c), s	9.8	17.8	17.8	7.5	35.1	35.1	9.0	0.0	6.5	4.7	0.0	18.9
347 1218 1268 337 1009 1038 106 0 248 257 0 0 68 60 1 248 257 0 68 60 1 248 257 0 0 68 60 1 248 257 0 0 68 60 1 248 257 0 0 69 60 1 248 257 0 0 69 60 1 248 257 0 0 1 20 1 20 1 20 1 20 1 20 1 20 1 20	Prop In Lane	1.00		90.0	1.00		0.13	1.00		0.23	1.00		0.76
0.86 0.44 0.44 0.09 0.59 0.59 0.09 0.00 0.40 0.30 0.00 0.00 1.00 1.00 0.47 0.057 1.09 0.67 0.67 1.00 1.00 0.47 0.67 1.00 1.00 1.00 0.67 0.67 1.00 1.00 1.00 1.00 0.67 0.67 1.00 1.00 1.00 1.00 1.00 0.63 0.53 0.53 1.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00	Lane Grp Cap(c), veh/h	347	1218	1268	337	1009	1038	106	0	248	257	0	284
507 1218 1268 337 1009 1038 162 0 518 375 0 1.00 1.00 1.00 100 0.657 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	V/C Ratio(X)	98.0	0.44	0.44	0.09	0.59	0.59	0.09	0.00	0.40	0.30	0.00	0.86
1100 1100 100 0.67 0.67 10.0 100 100 100 100 100 100 100 1100	Avail Cap(c_a), veh/h	203	1218	1268	337	1009	1038	162	0	518	375	0	588
1.00 1.00 1.00 0.53 0.53 1.00 0.00 1.00 0.00 0.00 0.51.1 9.2 9.2 20.6 28.3 28.3 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.	HCM Platoon Ratio	1.00	1.00	1.00	0.67	19.0	19.0	1.00	1.00	1.00	1.00	1.00	1.00
21.7 9.2 9.2 20.6 28.3 28.3 48.1 0.0 51.1 43.5 0.0 9.5 0.0 0.0 0.0 0.3 0.1 0.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Upstream Filter(I)	1.00	1.00	1.00	0.53	0.53	0.53	1.00	0.00	1.00	1.00	0.00	1.00
9.5 1.2 1.1 0.3 1.4 1.3 0.3 0.0 10 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Uniform Delay (d), s/veh	21.7	9.2	9.2	50.6	28.3	28.3	48.1	0.0	51.1	43.5	0.0	52.3
Avehance of the control of the contr	incr Delay (d2), s/veh	9.5	1.2	1.	0.3	1.4	1.3	0.3	0.0	1.0	0.7	0.0	7.7
Sych 312 10.4 10.4 20.8 29.6 48.5 0.0 3.0 2.2 0.0 2.0 0.0 2.1 10.4 10.4 20.8 29.6 48.5 0.0 52.1 44.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
siveh 31.2 10.4 10.4 20.8 29.6 29.6 48.5 0.0 52.1 44.1 0.0 0 C B B C C C D A D D A D A D D A A D D A D A D	%ile BackOfQ(50%),veh/ln	6.3	6.9	7.2	0.7	16.2	16.7	0.3	0.0	3.0	2.2	0.0	8.4
312 10.4 10.4 20.8 29.6 48.5 0.0 52.1 44.1 0.0 C B B C C C D A D D A 1397 1246 10.8 14.8 29.4 51.8 5 15.3 79.8 10.4 24.5 95.1 5.9 29.0 5, 15.3 37.9 10.4 24.5 95.1 5.9 29.0 5, 15.0 37.1 6.7 8.5 19.8 2.6 20.9 10.5 10.6 37.1 6.7 8.5 99.4 0.0 1.6	Unsig. Movement Delay, s/veh												
C B B C C C D A D D 1397 1246 108 1397 1246 108 1397 1246 108 140 6 1 2 3 4 6 7 8 15.3 79.8 10.4 24.5 95.1 5.9 29.0 0, s 230 33.0 15.0 6.5 6.0 4.5 6.5 15.5 10.6 37.1 6.7 8.5 19.8 2.6 20.9 15.5 10.6 37.1 6.7 8.5 19.8 2.6 20.9 16.7 26.4 26.4	LnGrp Delay(d),s/veh	31.2	10.4	10.4	20.8	29.6	29.6	48.5	0.0	52.1	44.1	0.0	60.0
1397 1246 108 14.8 29.4 51.8 8 15.3 79.8 10.4 24.5 95.1 5.9 29.0 4.0 6.0 4.0 6.5 6.0 4.5 6.5 0,5 230 34.0 15.0 37.5 61.0 5.5 46.5 1),5 10.6 37.1 6.7 8.5 19.8 2.6 20.0 0.7 0.0 0.1 0.5 9.4 0.0 1.6	LnGrp LOS	ပ	В	В	ပ	ပ	ပ	O	Α	О	O	Α	Ш
14.8 29.4 51.8 B C D D 1 2 3 4 6 7 8 5 15.3 79.8 10.4 24.5 95.1 5.9 29.0 6,5 23.0 34.0 15.0 37.5 61.0 5.5 46.5 1), 5 10.6 37.1 6.7 8.5 19.8 2.6 20.9 0.7 0.0 0.1 0.5 9.4 0.0 1.6	Approach Vol, veh/h		1397			1246			108			324	
1 2 3 4 6 7 7 8 10.1 24.5 95.1 5.9 2 7 8 10.4 24.5 95.1 5.9 2 7 9.5 23.0 34.0 15.0 37.5 61.0 5.0 5.5 61.0 5.0 5.5 61.0 5.5 61.0 5.5 61.0 5.5 61.0 5.5 61.0 5.5 61.0 5.5 61.0 5.5 61.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	Approach Delay, síveh		14.8			29.4			21.8			56.2	
1 2 3 4 6 7 7 8 153 798 10.4 24.5 95.1 5.9 2 8 4 0.6 10.4 24.5 95.1 5.9 2 9.5 1.5 10.6 37.1 6.7 8.5 19.8 2.6 2 9.4 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Approach LOS		B			ပ			Ω			ш	
5 15.3 79.8 10.4 24.5 95.1 5.9 2 4.0 6.0 4.0 6.5 6.0 4.5 0, s 230 34.0 15.0 37.5 61.0 55 1), s 10.6 37.1 6.7 8.5 19.8 2.6 2 1), 0.7 0.0 0.1 0.5 9.4 0.0 26.4	Timer - Assigned Phs	_	2	က	4		9	7	∞				
4.0 6.0 4.0 6.5 6.0 4.5 0, s 23.0 34.0 15.0 37.5 61.0 5.5 4 1), s 10.6 37.1 6.7 8.5 19.8 2.6 2 0.7 0.0 0.1 0.5 9,4 0.0	Phs Duration (G+Y+Rc), s	15.3	79.8	10.4	24.5		95.1	5.9	29.0				
23.0 34.0 15.0 37.5 61.0 5.5 10.6 37.1 6.7 8.5 19.8 2.6 0.7 0.0 0.1 0.5 9.4 0.0	Change Period (Y+Rc), s	4.0	0.9	4.0	6.5		0.9	4.5	6.5				
106 37.1 6.7 8.5 19.8 2.6 0.7 0.0 0.1 0.5 9.4 0.0 26.4	Max Green Setting (Gmax), s	23.0	34.0	15.0	37.5		61.0	5.5	46.5				
0.7 0.0 0.1 0.5 9.4 0.0 26.4	Max Q Clear Time (g_c+I1), s	10.6	37.1	6.7	8.5		19.8	5.6	20.9				
ummary Jelay	Green Ext Time (p_c), s	0.7	0.0	0.1	0.5		9.4	0.0	1.6				
Delay	Intersection Summary												
(and	HCM 6th Ctrl Delay			26.4									
	HOM 6th 10s			1.07									

Notes
User approved pedestrian interval to be less than phase max green.

02/12/2019 CivTech BR

Synchro 10 Report Page 1

Smoke Tree Resort 2: Quail Run Rd & Lincoln Drive 2025 Total PM

	EBL S	# EBT	₩BT 1024 1024 NA NA	NBL 1	₩ 4° °° °° °° °° °° °° °° °° °° °° °° °°	SBL SBL 14 14 14 Perm	→ SBT SBT O O O O N AN	
	7	4 4	ω ω	2	2 2	9	9 9	
	3.5	15.0	15.0	33.0	7.0	33.0	7.0	
	3.0	4.0	56.9%	27.7%	27.7%	27.7%	27.7%	
	0.0	0.0	0.0	<u>C:</u>	0.0	0.0	0.0	
	Lead	2	Lag					
	None 71.6	None 69.1	None 55.1	С-Мах	C-Max 48.4	C-Max 48.4	C-Max 48.4	
	0.43	0.58	0.78		0.00	0.03	0.14	
	0.0	0.0	0.0		0.0	31.2	0.0	
	ပ	C 34.2	D 44.3		A	S	A.5	
		S	Q				V	
	Actuated Cycle Length: 130 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green	IBTL and	16:SBTL	Start of	Green			
_	Natural Cycle: 70 Control Type: Actuated-Coordinated							
ntersection Signal Delay: 37.5	74				itersectio	Intersection LOS: D		
⊆	ntersection Capacity Utilization 61.3% Analysis Period (min) 15			2	O Level	ICU Level of Service B	n o	

Splits and Phases: 2: Quail Run Rd & Lincoln Drive

02/12/2019 Synchro 10 Report CivTech BR Page 3

Smoke Tree Resort 2025 Total PM

2: Quail Run Rd & Lincoln Drive HCM 6th Signalized Intersection Summary

	\	Ť	٠	-		,	_	-	_		•	,
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F	+		F	₩			4		F	2,	
Traffic Volume (veh/h)	82	981	2	0	1024	25	-	0	2	14	0	93
Future Volume (veh/h)	83	981	2	0	1024	25	-	0	2	14	0	93
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		8			8			8			8	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	94	1090	2	0	1138	28	-	0	2	16	0	103
Peak Hour Factor	0.90	06:0	0.00	0.00	0.00	06:0	06:0	06:0	06:0	06:0	06:0	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	183	1569	m	22	1251	31	251	17	462	727	0	749
Arrive On Green	0.09	0.86	98.0	0.00	0.71	0.71	0.47	0.00	0.47	0.47	0.00	0.47
Sat Flow, veh/h	1781	3639	7	516	3544	87	453	36	626	1415	0	1585
Grp Volume(v), veh/h	94	532	260	0	270	296	3	0	0	16	0	103
Grp Sat Flow(s),veh/h/ln	1781	1777	1869	516	1777	1855	1468	0	0	1415	0	1585
O Serve(g_s), s	4.3	13.4	13.4	0.0	34.3	34.3	0.0	0.0	0.0	0.0	0.0	4.8
Cycle Q Clear(g_c), s	4.3	13.4	13.4	0.0	34.3	34.3	4.8	0.0	0.0	0.7	0.0	4.8
Prop In Lane	1.00		0.00	1.00		0.05	0.33		0.67	1.00		1.00
Lane Grp Cap(c), veh/h	183	99/	908	22	627	655	731	0	0	727	0	749
V/C Ratio(X)	0.51	69.0	69:0	0.00	0.91	0.91	0.00	0.00	0.00	0.02	0.00	0.14
Avail Cap(c_a), veh/h	318	1196	1258	141	923	963	731	0	0	727	0	749
HCM Platoon Ratio	2.00	2.00	2.00	2.00	2.00	2.00	1.00	1.00	1.00	1:00	1.00	1.00
Upstream Filter(I)	0.91	0.91	0.91	0.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Unitorm Delay (d), s/veh	78.7	0.9	0.9	0.0	1/.4	1/.4	18.1	0.0	0.0	18.3	0.0	19.3
Incr Delay (d2), s/veh	2.0	1.0	1.0	0.0	9.4	9.1	0.0	0.0	0.0	0.1	0.0	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0:0	0.0	0:0	0.0
%ile BackOfQ(50%),veh/lin	<u>~</u> ∞:	2.7	2.8	0.0	9.3	6.7	0.1	0.0	0.0	0.3	0.0	1.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	30.2	0.7	0.7	0.0	26.8	26.5	18.1	0.0	0.0	18.3	0.0	19.7
LNGrp LUS	اد	∢ ;	⋖	⋖	ا د	اد	20	∢ ,	⋖	20	⋖	2
Approach Vol, veh/h		1186			1166			က			119	
Approach Delay, síveh		8.9			26.7			18.1			19.5	
Approach LOS		A			O			В			B	
Timer - Assigned Phs		2		4		9	7	00				
Phs Duration (G+Y+Rc), s		67.4		62.6		67.4	10.2	52.4				
Change Period (Y+Rc), s		0.9		6.5		0.9	4.0	6.5				
Max Green Setting (Gmax), s		30.0		87.5		30.0	16.0	67.5				
		8.9		15.4		8.9	6.3	36.3				
Green Ext Time (p_c), s		0.0		6.7		9.0	0.1	9.6				
Intersection Summary												
HCM 6th Ctrl Delay			17.8									
			2									

02/12/2019 CivTech BR

Smoke Tree Resort 2025 Total PM

4: Smoke Tree Access B & Lincoln Dr

Smoke Tree Resort 2025 Total PM

5: Lincoln Medical West & Lincoln Dr HCM 6th TWSC

ntersection							
int Delay, s/veh	0.7						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	₹		۴	\$	>		
Traffic Vol, veh/h	8/6	70	36	1032	18	34	
Future Vol, veh/h	876	70	36	1032	18	34	
Conflicting Peds, #/hr		0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	•	None		None	
Storage Length		•	25	•	0		
Veh in Median Storage,	0 #	•	1	0	0		
Grade, %	0	٠	1	0	0		
Peak Hour Factor	06	8	06	8	06	06	
Heavy Vehicles, % Mvmt Flow	1087	22	40	1147	20	38 2	
Major/Minor IV	Major1	2	Major2	2	Minor1		
Conflicting Flow All	0	0	0 1109	0	1752	555	
Stage 1		•	1		1098		
Stage 2				٠	654		
Critical Hdwy	٠	٠	4.14	٠	6.84	6.94	
Critical Hdwy Stg 1		•	•		5.84		
Critical Hdwy Stg 2	•	1	1	•	5.84		
Follow-up Hdwy	٠	٠	2.22	٠	3.52	3.32	
Pot Cap-1 Maneuver	٠	•	625	•	77	475	
Stage 1	٠	٠	•	•	787		
Stage 2					4/4		
Platouri blockeu, 76	٠	١	L	۱	C	L	
Mov Cap-1 Maneuver		•	679		700	4/5	
Mov Cap-2 Maneuver		٠	1		180		
Stage 1					702		
Stage 2	٠			١	4/4		
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.4		19.7		
HCM LOS					O		
Minor Lane/Major Mvmt	Z	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		303		٠	625		
HCM Lane V/C Ratio		0.191			0.064		
HCM Control Delay (s)		19.7	1		11.2		
HCM Lane LOS		C			٥		
				,	Ω		

	r NBL NBR	*	30	30	0	Stop	- None		- 0 0	6	3 33 29	Minor1	0 1744 563	- 1121 -	- 6.84 6.94	- 5.84 -	- 5.84 -		- 78 470	- 44/ -	- 75 470	- 185 -	- 144 -	NB	23.4	U	_	- 617 -	- 0.038 -	- 11.1 -
	WBL WBT	*	-	21 1038		Free Free	- None	0 -	-	0.	23 23 23 1153	Major2	1125 0		4.14 -			2.22	617 -		 - /10			WB	0.2		EBT EBR			
.7	EBR	2	7 2)5 7	0	Free	- None		0	6	2 2 17 8		0 0		7			2							0			257	0.242	23.4
Int Delay, s/veh 0.7	Movement EBT	Lane Configurations +13		Future Vol, veh/h 1005	eds, #/hr 0	Free		Storage, #	,	6	Heavy Vehicles, % 2 Mvmt Flow 1117	Major/Minor Major1	Conflicting Flow All 0	Stage 1	Critical Hdwy -		Critical Hdwy Stg 2		euver	Stage 2		neuver	- Sage 2	Approach EB	rol Delay, s	HCM LOS	or Mvmt			HCM Control Delay (s)

Synchro 10 Report Page 6

02/12/2019 CivTech BR

Synchro 10 Report Page 5

02/12/2019 CivTech BR

6: Lincoln Medical East & Lincoln Dr Smoke Tree Resort 2025 Total PM

Intersection							
Int Delay, síveh	0.2						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	*			**		ĸ	
Traffic Vol, veh/h	1027	4	0	1058	2	- 8	
Future Vol, veh/h	1027	4	0	1058	2	30	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	•	None	•	None		None	
Storage Length	•	•	•	•	•	0	
Veh in Median Storage,	#	1	1	0	0	1	
Grade, %	0	•		0	0	•	
Peak Hour Factor	06	8	06	8	06	06	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	1141	4	0	1176	2	33	
Major/Minor M	Major1	2	Major2	2	Minor1		
Conflicting Flow All	0	0			1731	573	
Stage 1	•	•	•	•	1143	٠	
Stage 2				•	288	,	
Critical Hdwy	1	1	•	1	6.84	6.94	
Critical Hdwy Stg 1	•	•	•	•	5.84	•	
Critical Hdwy Stg 2	•	•	1	•	5.84	•	
Follow-up Hdwy	•	•	•	•	3.52	3.32	
Pot Cap-1 Maneuver	•	•	0	•	79	463	
Stage 1	•	•	0	•	266	•	
Stage 2			0	٠	218	•	
Platoon blocked, %	•	•		٠			
Mov Cap-1 Maneuver	1	1	1	1	79	463	
Mov Cap-2 Maneuver	•	•	•	1	192	•	
Stage 1	1	1	1	1	266	1	
Stage 2	•	•	•	•	218	'	
Approach	EB		WB		NB		
HCM Control Delay, s	0		0		13.4		
HCM LOS					В		
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBT		
Capacity (veh/h)		463	1	1	1		
HCM Lane V/C Ratio		0.072		٠	•		
HCM Control Delay (s)		13.4	1		1		
HCM Lane LOS		Ф	•	٠	•		
HCM 95th %tile Q(veh)		0.2	•	•	•		

Synchro 10 Report Page 7 02/12/2019 CivTech BR

Smoke Tree Resort 2025 Total PM

7: Apartment Drwy & Lincoln Dr

S													
ane Configurations	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	K-	₹		*	*			4		K.		¥c_	
I raffic Vol, veh/h	00	066	46	7	954	10	74	c	53	∞	0	88	
Future Vol, veh/h	∞	066	46	7	954	10	74	S	53	8	0	38	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized			None	1	•	None	1	1	None	1	1	None	
Storage Length	22		٠	25		٠	٠	٠	٠	0	٠	0	
Veh in Median Storage, #		0	1		0	1	٠	0	1	1	0		
Grade, %	٠	0	٠	٠	0	٠	١	0	•	٠	0		
Peak Hour Factor	8	06	06	06	8	06	06	06	06	06	06	06	
Heavy Vehicles, %	2	2	7	7	7	7	7	7	2	2	7	2	
Wvmt Flow	6	1100	21	∞	1060	=	82	က	26	6	0	42	
	7		2	Croic		2	Lacai		2	(inor)			
≥			>	Major 2		2	MILIOLI		2	MILIOIZ			
۸AII	1071	0	0	1151	0	0	1690	2231	216	1652	•	536	
Stage 1							544	1007		1082			
		١	٠		١	•	040	100/		0/0	١		
Critical Howy	4. 14			4.14			40.7	0.04	0.94	45.7		0.94	
Allical Edwy Stg 1		•	١			۱	40.0	D. C.	١	0.04			
7 6	, 5			, ,			90.0	20.04	, ,,	0.04		, ,,	
	77.7	٠		77.7	۱		2.52	4.02	3.32	3.32	' <	3.32	
leannel	7+7			200			212	24,	400	222	0 0	404	
Stage 1		٠	٠		٠	٠	213	213	٠	727	0		
Stage 2							490	067		4/4	0		
	147	٠	٠	007			L	7	077	C.		00.8	
	04/			903			~ 22 L	4 4	400	25		484	
Mov Cap-2 Maneuver		•	٠	١	۱	١	~ 22	- 4	۱	200	۱	٠	
Stage 1							710	607		677			
Stage 2		٠	٠		٠		7447	987		403	٠		
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			0.1		↔	\$ 443.8			26.1			
HCM LOS							ш			Ω			
Minor Lane/Major Mvmt	Z	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	WBR SBLn1 SBLn2	BLn2			
Capacity (veh/h)		82	647	,	•	603	,		52	489			
HCM Lane V/C Ratio	_	1.699 0.014	0.014	•		0.013	•	•	0.171	980.0			
HCM Control Delay (s)	\$	\$ 443.8	10.6		1	=			88	13.1			
HCM Lane LOS		ட	В	•	•	В	•	•	ш	В			
HCM 95th %tile Q(veh)		12	0	•	•	0	•	•	9.0	0.3			
Notes													
~: Volume exceeds capacity	ity	\$: Del	\$: Delay exceeds 300s	seds 30		F: Comp	utation	Not De	fined	*: All	major v	+: Computation Not Defined *: All major volume in platoon	atoon

Smoke Tree Resort 2025 Total PM

tersection													
nt Delay, s/veh	4.1												
1 ovement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations	F	4₽		-	4₽			4		<u></u>		ĸ.	
raffic Vol, veh/h	12	983	09	69	952	6	16	-	100	വ	0	8	
uture Vol, veh/h	12	983	09	69	952	6	16	-	100	2	0	00	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop S	Stop	Stop	Stop	Stop	
RT Channelized	•	•	None	1	1	None	1	1	None	•	•	None	
Storage Length	25	٠	•	22	٠	٠	٠	٠	٠	0	٠	0	
/eh in Median Storage, #	#	0	•	٠	0	•	٠	0	٠	٠	0		
Grade, %	٠	0	•	•	0	٠	٠	0	•	٠	0		
Peak Hour Factor	06	8	06	8	06	06	06	8	8	06	8	06	
Heavy Vehicles, %	2	2	2	7	2	2	7	2	7	7	2	2	
Avmt Flow	13	1092	19	11	1058	10	9	-	Ξ	9	0	6	

	534			6.94		1	3.32	491	,			491												
		1	'	1		1		0	0	0		1	•	1	1									
Minor2	1790	1217	573	7.54	6.54	6.54	3.52	21	192	472		33	33	188	349	SB	59.6	ш	SBLn2	491	- 0.168 0.018	12.5	В	0.1
_	280	1	•	6.94		1	3.32	458	•	1		458	•	1	1				3Ln1	33	.168	135	ш	0.5
	2374	1152	1222	6.54	5.54	5.54	4.02	34	270	250		53	29	265	218				WBR SBLn1 SBLn2		0 -		٠	
Minor1	0 1835	1152	683	7.54	6.54	6.54	3.52	47	210	405		41	41	206	347	R	62.9	ш	WBT			•	•	•
Σ	0	٠	٠	1	٠	1	٠	٠	•	ì	٠	1	•	1	•				WBL	266	- 0.128	11.9	В	0.4
	0	1	•	1		1	•	1	•	1		1	•	1	1				EBR			1	•	•
Major2	0 1159	٠	٠	4.14	٠	i.	2.22	266	•	ř		266	•	ì		WB	0.8		EBT		٠	٠	•	
2	0	•	•	1		1	٠	•	•	1		1	•	1	•				EBL	648	0.021	10.7	В	0.1
	0	•	٠	1	٠	1	٠	•	•	1	٠	1	•	1	1				NBLn1	182	0.714 0.021	67.9	ш	4.5
Major1	1068			4.14		1	2.22	648		1		648		1	1	FB	0.1							
Major/Minor M	Conflicting Flow All	Stage 1	Stage 2	Critical Hdwy	Critical Hdwy Stg 1	Critical Hdwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Stage 2	Platoon blocked, %	Mov Cap-1 Maneuver	Mov Cap-2 Maneuver	Stage 1	Stage 2	Approach	HCM Control Delay, s	HCM LOS	Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	HCM Control Delay (s)	HCM Lane LOS	HCM 95th %tile Q(veh)

Synchro 10 Report Page 9 02/12/2019 CivTech BR

Smoke Tree Resort 2025 Total PM

8: AJ's Drwy & Lincoln Dr HCM 6th TWSC

9: Scottsdale Rd & Lincoln Dr

	4	†	~	>	ţ	•	←	۶	-	•	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	r	4	*	r	₽ ₽	F	4413	r	444	*	
Traffic Volume (vph)	269	61	481	61	89	461	1762	99	1702	546	
Future Volume (vph)	269	61	481	61	89	461	1762	99	1702	546	
Turn Type	Split	A	vo+mq	Split	¥	Prot	¥	Prot	NA	vo+mq	
Protected Phases	4	4	2	∞	∞	2	2	-	9	4	
Permitted Phases			4							9	
Detector Phase	4	4	2	∞	∞	2	2	-	9	4	
Switch Phase											
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	10.0	2.0	10.0	7.0	
Minimum Split (s)	13.0	13.0	13.0	13.0	13.0	13.0	16.7	11.0	16.0	13.0	
Total Split (s)	32.0	32.0	27.0	21.0	21.0	27.0	54.0	23.0	20.0	32.0	
Total Split (%)	24.6%	24.6%	20.8%	16.2%	16.2%	20.8%	41.5%	17.7%	38.5%	24.6%	
Yellow Time (s)	4.0	4.0	4.0	3.6	3.6	4.0	4.7	3.3	4.7	4.0	
All-Red Time (s)	1.5	1.5	1.5	2.0	2.0	1.5	1.0	2.0	1.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	9.9	9.9	5.5	2.7	5.3	2.7	5.5	
Lead/Lag			Lead			Lead	Lag	Lead	Lag		
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	None	None	None	None	C-Max	None	
Act Effct Green (s)	26.5	26.5	49.8	6.7	6.7	23.3	64.1	6.7	48.2	80.4	
Actuated g/C Ratio	0.20	0.20	0.38	0.07	0.07	0.18	0.49	0.07	0.37	0.62	
v/c Ratio	1.02	1.02	0.77	0.52	0.50	0.83	0.81	0.55	1.00	0.57	
Control Delay	116.0	115.7	24.0	71.2	32.4	63.8	32.3	72.8	62.7	11.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	116.0	115.7	24.0	71.2	32.4	63.8	32.3	72.8	62.7	11.4	
FOS	ш	ш	S	ш	ပ	ш	O	ш	ш	Ω	
Approach Delay		76.1			43.9		38.6		50.8		
Approach LOS		Ш			D		O		D		
Intersection Summary											
Cycle Length: 130 Artuated Cycle Length: 130											
Offset: 0 (0%), Referenced to phase 6:SBT, Start of Green	phase 6:	SBT, Sta	rt of Gree	_							
Natural Cycle: 100											
Control Type: Actuated-Coordinated	linated										
Maximum v/c Ratio: 1.02											
Intersection Signal Delay: 50.6 Intersection Capacity Hilization 87.8%	6 on 87.8%			<u>=</u> C	Intersection LOS: D	LOS: D f Service	ш				
Analysis Period (min) 15	0.00			2			,				
Aldiyala r cilca (min)											

Splits and Phases:

9: Scottsdale Rd & Lincoln Dr 02

√

₹ ◆ Ø6 (R) **\$**02

02/12/2019 CivTech BR

Smoke Tree Resort 2025 Total PM

9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

1.00 1870 607 0.90 1740 1740 1740 1.00 1.00 42.9 49.3 0.0 1.00 No 1870 2 0.34 0.34 5106 11702 44.3 44.3 66.2 66 66 1.00 1.00 00 00 00 39.7 D 56 00.00 2 2 66 60.00 146 709 11844 144.5 0.00 833 11.7 7.9 0.00 11.00 10.00 1 36.1 D 2526 44.5 D 1.00 No 1870 1958 0.90 2 2306 0.45 5102 1305 1702 44.3 15.0 5.6 15.4 9.0 0.4 0.85 0.85 1538 1.00 1.00 31.7 4.4 4.4 0.0 NBL 461 461 0 0 1.00 2 0.16 3456 1728 1728 1728 1728 1729 0.02 559 0.02 557 1.00 1.00 0.10 0.0 0.0 0.0 72.5 87 0 0.100 1870 87 0.90 50.0 5.7 44.3 46.3 0.0 63.1 1.09 **4** 89 89 0 2 128 0.07 7771 1.00 No 1870 76 0.90 76 1777 5.4 5.4 128 0.59 210 1.00 1.00 58.5 1.6 0.0 231 26.5 5.5 21.5 21.0 0.1 59.5 32.0 5.5 26.5 28.5 0.0 19 0 0.1 481 0 0 1.00 1.00 1870 534 0.90 62.7 0.00 6 6 6 1.00 No 1870 0.90 0.0 0.00 0.0 A 1215 72.9 64.4 5.7 48.3 46.5 1.0 t * 18 7.3 0.0 569 569 0 1.00 1870 681 0.90 79.3 Ind Delay (d2), siveh initial Q Delay(d3),siveh % lie BackOfQ(50%),veh/in 1 Unsig. Movement Delay, siveh LnGrp Delay(d),siveh 77 Max Green Setting (Gmax), s Max Q Clear Time (g_c+I1), s Max Q Clear Time (g_c+I1), s Green Ext Time (p_c), s Timer - Assigned Phs Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Grp Volume(v), veh/h Grp Sat Flow(s), veh/h/ln Q Serve(g_s), s Cycle Q Clear(g_c), s Prop in Lane Lane Grp Cap(c), veh/h V/C Ratio(X) Avail Cap(c_a), veh/h HCM Platoon Ratio Adj Sat Flow, vehrhin Adj Flow Rate, vehrh Peak Hour Factor Percent Heavy Veh, % Cap, vehrh Arrive On Green Sat Flow, vehrh Upstream Filter(I) Uniform Delay (d), s/veh LnGrp LOS Approach Vol, veh/h Approach Delay, s/veh Approach LOS Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h) HCM 6th Ctrl Delay HCM 6th LOS

User approved pedestrian interval to be less than phase max green. User approved volume balancing among the lanes for furning movement.

02/12/2019 CivTech BR

Synchro 10 Report Page 11

Smoke Tree Resort 2025 Total PM

10: Quail Run Rd & Access A HCM 6th TWSC

	SBT	**	0	0	0	Free	None		0	0	06	2	0		0																			SBT					
	NBR SBL		0	0	0 0	Free Free	None -				06 06	2 2	0 1	Major2	0 0			- 4.12			- 2.218									CD	30			/BLn1 SBL					ì
	WBR NBT	42	1 0	1	0 0	Stop Free	None -		0 -	0	06 06	2 2	1 0	Major1	0 0	•		6.22 -			3.318 -									QN	QN o	0		NBT NBRWBLn1					
0	WBL W	<u>}</u> -	0	0	0	Stop Si	- N	0	0 #′	0	06	2	0	Minor1	2	0	2	6.42 6.	5.42	5.42	3.518 3.3	1021		1021		1021	1021	, ,	1701	M/D	WD								
Int Delay, s/veh	Movement	Lane Configurations	Traffic Vol, veh/h	Future Vol, veh/h	Conflicting Peds, #/hr	Sign Control	RT Channelized	Storage Length	Veh in Median Storage	Grade, %	Peak Hour Factor	Heavy Vehicles, %	Mvmt Flow	Major/Minor N	Conflicting Flow All	Stage 1	Stage 2	Critical Hdwy	Critical Hdwy Stg 1	Critical Hdwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Stage 2	Platoon blocked, %	Mov Cap-1 Maneuver	Mov Cap-2 Maneuver	Stage 1	Stage 2	Approach	Apploacii	HCM Control Delay, s	HCM LOS	Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	HCM Control Delay (s)	HCM Lane LOS	HCM 95th %tile Q(veh)

Synchro 10 Report Page 12 02/12/2019 CivTech BR

HCM 6th computational engine requires equal clearance times for the phases crossing the barrier

9: Scottsdale Rd & Lincoln Dr Timings Smoke Tree Resort 2025 Total PM Mitigated

2025 Lotal PM Mitigated	ated										I Imings
	1	1	~	>	ţ	•	←	۶	-	•	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	<i>y</i> -	4	¥C.	<i>y</i> -	₹	F	444	*	444	¥.	
Traffic Volume (vph)	269	61	481	61	89	461	1762	99	1702	546	
Future Volume (vph)	699	61	481	61	89	461	1762	99	1702	546	
Turn Type	Spill	NA	vo+mq	Spilt	NA	Prot	NA	Prot	NA	hm+ov	
Protected Phases	4	4	2	∞	∞	2	2	_	9	4	
Permitted Phases			4							9	
Detector Phase	4	4	2	∞	∞	2	2		9	4	
Switch Phase											
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	10.0	2.0	10.0	7.0	
Minimum Split (s)	13.0	13.0	13.0	13.0	13.0	13.0	16.7	11.0	16.0	13.0	
Total Split (s)	30.0	30.0	21.0	19.0	19.0	21.0	28.0	13.0	50.0	30.0	
Total Split (%)	25.0%	25.0%	17.5%	15.8%	15.8%	17.5%	48.3%	10.8%	41.7%	25.0%	
Yellow Time (s)	4.0	4.0	4.0	3.6	3.6	4.0	4.7	3.3	4.7	4.0	
All-Red Time (s)	1.5	1.5	1.5	2.0	2.0	1.5	1.0	2.0	1.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Total Lost Time (s)	5.5	5.5	5.5	2.6	2.6	5.5	2.7	5.3	5.7	5.5	
Lead/Lag			Lead			Lead	Lag	Lead	Lag		
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	None	None	None	None	C-Max	None	
Act Effet Green (s)	24.5	24.5	44.0	9.4	9.4	19.5	57.8	8.4	44.3	74.5	
Actuated g/C Ratio	0.20	0.20	0.37	0.08	0.08	0.16	0.48	0.07	0.37	0.62	
v/c Ratio	1.01	1.01	0.82	0.49	0.49	0.92	0.83	0.59	1.01	0.56	
Control Delay	100.0	9.66	29.0	64.6	29.9	72.4	31.6	73.2	60.5	9.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	100.0	9.66	29.0	64.6	29.9	72.4	31.6	73.2	9.09	9.5	
TOS	ш	ш	S	ш	ပ	ш	S	ш	ш	A	
Approach Delay		69.2			40.1		39.9		48.7		
Approach LOS		ш			Q		D		D		
Intersection Summary											
Cycle Lenath: 120											
Actuated Cycle Length: 120											
Offset: 0 (0%), Referenced to phase 6:SBT, Start of Green	phase 6:	SBT, Sta	irt of Gree	_							
Natural Cycle: 100											
Control Type: Actuated-Coordinated	inated										
Maximum v/c Ratio: 1.01											
Intersection Signal Delay: 48.9	~			≟	Intersection LOS: D	LOS: D					
Intersection Capacity Utilization 87.8%	n 87.8%			\circ	CU Level of Service E	of Service	ш				
Analysis Period (min) 15											

? Splits and Phases: 9: Scottsdale Rd & Lincoln Dr 🛡 🔻 Ø6 (R) 02 \$0 **€**

02/11/2019 CivTech BR

Synchro 10 Report Page 10

Smoke Tree Resort 2025 Total PM Mitigated

9: Scottsdale Rd & Lincoln Dr HCM 6th Signalized Intersection Summary

	•	†	~	>	ţ	4	•	-	•	٠	-	•
Marcomont	2	TOT		IOW	TOW	O O/W	Ī	TON	CON	100	TOO	000
Movement	EBL	EBI	EBK	WBL	WBI	WBK	NBL	INBI	NBK	SBL	SBI	SBK
Lane Configurations	F	ক :	-	F-	<u>^</u>	e e	F	<u>+</u> +	i	-	+++	L
Iraffic Volume (veh/h)	696	1.9	481	19	89	8/	461	79/1	20	99	70/1	546
Future Volume (veh/h)	269	61	481	61	89	∞ α	461	1762	20	99	1702	546
Ded-Rike Adi/A phT)	1 00	>	100	100	>	100	1 00	0	0 0	0 0	0	9
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	8.1
Work Zone On Approach		8			S N			N N			8	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	681	0	534	89	9/	87	512	1958	99	73	1891	409
Peak Hour Factor	06.0	06:0	06.0	06:0	06:0	06:0	06:0	06:0	06:0	06:0	06:0	0.90
Percent Heavy Veh, %	2	2	7	7	7	2	2	2	2	2	2	2
Cap, veh/h	727	0	528	130	130	116	446	2285	99	93	1885	606
Arrive On Green	0.20	0.00	0.20	0.07	0.07	0.07	0.13	0.45	0.45	0.05	0.37	0.37
Sat Flow, veh/h	3563	0	1585	1781	1777	1585	3456	5102	146	1781	5106	1585
Grp Volume(v), veh/h	681	0	534	89	9/	87	512	1305	60/	73	1891	607
Grp Sat Flow(s),veh/h/ln	1781	0	1585	1781	1777	1585	1728	1702	1844	1781	1702	1585
Q Serve(g_s), s	22.6	0.0	24.5	4.4	5.0	6.5	15.5	41.2	41.4	4.9	44.3	31.8
Cycle Q Clear(g_c), s	22.6	0.0	24.5	4.4	2.0	6.5	15.5	41.2	41.4	4.9	44.3	31.8
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.08	1.00		1.00
Lane Grp Cap(c), veh/h	727	0	528	130	130	116	446	1524	826	93	1885	606
V/C Ratio(X)	0.94	0.00	1.01	0.52	0.59	0.75	1.15	0.86	0.86	0.79	1:00	0.67
Avail Cap(c_a), veh/h	727	0	278	199	198	177	446	1524	826	114	1885	606
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0 !	1:00	1:00
Upstream Filter(I)	00.1	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	47.0	0.0	40.0	53.6	53.9	54.6	52.3	29.7	29.7	56.2	37.8	17.7
ncr Delay (d2), s/veh	19.2	0.0	41.8	1.2	1.6	3.7	89.4	4.8	8.6	19.7	21.5	3.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0
%ile BackOfQ(50%),veh/ln	11.9	0.0	21.5	2.0	2.3	2.7	12.2	17.4	19.8	2.7	21.8	18.8
Unsig. Movement Delay, s/veh		c c	3			C	1		0	L	c C	
LnGrp Delay(d),s/ven	7.99	0.0	8. 8. 1.	54.8	55.4	28.5	141./	34.5	38.3	75.9	59.3	21.6
LnGrp LOS	ш	A 121	-	۵	73.1	ш	_	2 2	۵	ш	1 12 3C	اد
Approach Vol. Verini		0171			162			0707			1/67	
Approach Delay, Siveri		- 27			20.3			27.2			500.4	
Apploach EC3		_			_			_			۵	
Timer - Assigned Phs	1	2		4	2	9		8				
Phs Duration (G+Y+Rc), s	11.6	59.4		30.0	21.0	20.0		14.4				
Change Period (Y+Rc), s	* 5.3	5.7		5.5	5.5	5.7		9.9				
Max Green Setting (Gmax), s	r.7.7	52.3		24.5	15.5	44.3		13.4				
Max Q Clear Time (g_c+I1), s	6.9	43.4		26.5	17.5	46.3		8.5				
Green Ext Time (p_c), s	0.0	2.7		0.0	0.0	0.0		0.3				
Intersection Summary												
HCM 6th Ctrl Delay			57.7									
HCM 6th LOS			ш									

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the larnes for furning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

02/11/2019

Civ/Tech BR

APPENDIX I

QUEUE STORAGE ANALYSIS

	۶	-	•	←	•	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	269	1209	28	1132	7	69	94	388	
v/c Ratio	0.75	0.52	0.13	0.63	0.05	0.29	0.27	0.85	
Control Delay	30.1	14.1	8.6	11.4	29.7	34.6	36.4	49.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	30.1	14.1	8.6	11.4	29.7	34.6	36.4	49.1	
Queue Length 50th (ft)	86	235	1	23	5	36	64	225	
Queue Length 95th (ft)	231	473	m29	#729	13	68	85	310	
Internal Link Dist (ft)		105		1255		475		337	
Turn Bay Length (ft)	150		95		80		135		
Base Capacity (vph)	430	2345	221	1794	299	422	588	730	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.63	0.52	0.13	0.63	0.02	0.16	0.16	0.53	

Intersection Summary

02/12/2019 CivTech BR

 ^{# 95}th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.
 m Volume for 95th percentile queue is metered by upstream signal.

	٠	→	•	•	†	\	ļ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBL	SBT
Lane Group Flow (vph)	128	1245	2	1054	10	29	73
v/c Ratio	0.55	0.70	0.02	0.77	0.01	0.05	0.09
Control Delay	35.4	35.7	21.5	38.4	0.0	28.4	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	35.4	35.7	21.5	38.4	0.0	28.4	0.2
Queue Length 50th (ft)	73	416	1	402	0	15	0
Queue Length 95th (ft)	151	626	6	426	0	42	0
Internal Link Dist (ft)		1255		319	137		291
Turn Bay Length (ft)	25		25				
Base Capacity (vph)	297	2382	149	1834	689	562	798
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.43	0.52	0.01	0.57	0.01	0.05	0.09
Intersection Summary							

	۶	→	•	•	•	•	†	\	ļ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	300	303	564	46	101	368	1636	61	2016	740	
v/c Ratio	0.90	0.90	0.89	0.38	0.37	0.76	0.65	0.50	0.98	0.63	
Control Delay	77.0	77.0	35.4	62.1	28.9	60.3	25.1	67.8	50.5	8.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	77.0	77.0	35.4	62.1	28.9	60.3	25.1	67.8	50.5	8.4	
Queue Length 50th (ft)	238	241	228	35	16	142	347	46	560	133	
Queue Length 95th (ft)	#404	#408	#317	73	45	194	436	91	#732	274	
Internal Link Dist (ft)		389			130		477		335		
Turn Bay Length (ft)	175			90		275		185			
Base Capacity (vph)	343	346	641	197	412	497	2524	130	2067	1175	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.87	0.88	0.88	0.23	0.25	0.74	0.65	0.47	0.98	0.63	

Intersection Summary 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	-	•	←	4	†	-	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	297	1100	30	1216	9	99	78	246	
v/c Ratio	0.76	0.43	0.11	0.63	0.05	0.57	0.30	0.62	
Control Delay	30.7	9.2	3.3	6.4	37.2	62.3	42.7	25.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	30.7	9.2	3.3	6.4	37.2	62.3	42.7	25.8	
Queue Length 50th (ft)	115	190	1	22	6	72	54	70	
Queue Length 95th (ft)	230	291	m8	578	20	127	91	164	
Internal Link Dist (ft)		105		1255		475		337	
Turn Bay Length (ft)	150		95		80		135		
Base Capacity (vph)	441	2534	263	1915	313	408	566	743	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.67	0.43	0.11	0.63	0.03	0.24	0.14	0.33	
Intersection Summary									

m Volume for 95th percentile queue is metered by upstream signal.

02/12/2019 CivTech BR

	•	→	←	†	\	ļ
Lane Group	EBL	EBT	WBT	NBT	SBL	SBT
Lane Group Flow (vph)	94	1092	1166	3	16	103
v/c Ratio	0.43	0.58	0.78	0.00	0.03	0.14
Control Delay	28.4	19.9	35.7	0.0	31.2	0.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	28.4	19.9	35.7	0.0	31.2	0.4
Queue Length 50th (ft)	41	264	436	0	9	0
Queue Length 95th (ft)	92	289	458	0	29	0
Internal Link Dist (ft)		1255	319	137		291
Turn Bay Length (ft)	25					
Base Capacity (vph)	292	2382	1831	648	524	749
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.32	0.46	0.64	0.00	0.03	0.14
Intersection Summary						

	۶	→	\rightarrow	•	←	4	†	>	ļ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	348	352	534	68	163	512	2014	73	1891	607	
v/c Ratio	1.01	1.01	0.82	0.49	0.49	0.92	0.83	0.59	1.01	0.56	
Control Delay	100.0	99.6	29.0	64.6	29.9	72.4	31.6	73.2	60.5	9.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	100.0	99.6	29.0	64.6	29.9	72.4	31.6	73.2	60.5	9.2	
Queue Length 50th (ft)	~292	~295	210	52	30	202	503	55	~540	138	
Queue Length 95th (ft)	#495	#501	#346	97	63	#344	597	#120	#658	232	
Internal Link Dist (ft)		389			130		477		335		
Turn Bay Length (ft)	175			90		275		185			
Base Capacity (vph)	343	347	654	197	440	558	2441	130	1877	1080	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.01	1.01	0.82	0.35	0.37	0.92	0.83	0.56	1.01	0.56	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Signalized Intersection 2025

Average Vehicle Length (ft): 25 Cycles: 2

Intersection Cycle Length (sec):

Intersection Cycle Length (sec): 130
Equation Used: storage length = 2 x (vehicles/hour)/(cycles/hour) x average vehicle length

Interception	Annrasah	AM Peak	Midday	PM Peak	Max vehs per	Max trucks	Storage
Intersection	Approach	(veh/hr)	Peak	(veh/hr)	2 cycles	per 2 cycles	Length
	NB Left	6	0	8	1	0	25'
	SB Left	85	0	70	7	0	175'
	EB Left	242	0	267	20	0	500'
Mockingbird Lane & Lincoln Dr	WB Left	25	0	27	2	0	50'
Mockingbild Laile & Lilicolli Di	NB Right	25	0	21	2	0	50'
	SB Right	253	0	169	19	0	475'
	EB Right	33	0	32	3	0	75'
	WB Right	48	0	71	6	0	150'
	NB Left	1	0	1	1	0	25'
	SB Left	26	0	14	2	0	50'
	EB Left	115	0	85	9	0	225'
Quail Run Rd & Lincoln Dr	WB Left	2	0	0	1	0	25'
Quali Null Na & Ellicoli Di	NB Right	8	0	2	1	0	25'
	SB Right	66	0	93	7	0	175'
	EB Right	4	0	2	1	0	25'
	WB Right	12	0	25	2	0	50'
	NB Left	331	0	461	34	0	850'
	SB Left	55	0	66	5	0	125'
	EB Left	500	0	569	42	0	1050'
Scottsdale Rd & Lincoln Dr	WB Left	41	0	61	5	0	125'
Scottsdale Nd & Lincoln Di	NB Right	43	0	50	4	0	100'
	SB Right	666	0	546	49	0	1225'
	EB Right	508	0	481	37	0	925'
	WB Right	52	0	78	6	0	150'

Unsignalized Intersection 2025

Average Vehicle Length (ft): 25

Equation Used: storage length = $2 \times (vehicles/hour)/(60 \text{ minutes/hour}) \times average vehicle length}$

Intersection	Approach	AM Peak	Midday	PM Peak	Veh per 2	Trucks per	Storage
intersection	Approach	(veh/hr)	Peak	(veh/hr)	minutes	2 minutes	Length
	NB Left	16	0	18	1	0	25'
	SB Left	0	0	0	0	0	0'
	EB Left	0	0	0	0	0	0'
Smoke Tree Access B & Lincoln	WB Left	26	0	36	2	0	50'
Dr	NB Right	22	0	34	2	0	50'
	SB Right	0	0	0	0	0	0'
	EB Right	17	0	20	1	0	25'
	WB Right	0	0	0	0	0	0'

APPENDIX J

SIGHT DISTANCE ANALYSIS

Smoke Tree

Sight Distance Analysis

Location: Smoke Tree Access B & Lincoln Dr

Assumption	s and/or	Givens

Elements of Design from AASHTO	6th	Edition	AASHTO Ref
Driver Eve Height			
Passenger Vehicle		3.50 ft	§3.2.6, p 3-14
Truck		7.60 ft	§3.2.6, p 3-14
Object Height			
Stopping Sight Distance		2.00 ft	§3.2.6, p 3-14
Passing Sight Distance		3.50 ft	§3.2.6, p 3-14
Vehicle Height		4.25 ft	§3.2.6, p 3-14
Driver Eye Location			
From Edge of Major Rd Traveled Way		14.50 ft	9.5.3, B1
Deceleration Rate (a)			
Passenger Vehicle		11.20 ft/sec ²	§3.2.2, p 3-3
Truck		N/A ft	
Brake reaction time (t)		2.50 sec	§3.2.2, p 3-4

Site Specific Data (Bike & turn lanes are outside traveled way and are not considered)

opecine bata (bike & turn lanes are outside t	uvere	a way ana	are not con	i i Si dei edj
Major Street Design Speed (V _{major})		45	MPH	
Grades - Approaching Minor Street from: (- =	approa	ching dowr	hill)	
Left (G _L)		0.00	%	
Right (G _R)		0.00	%	
Approach Grade Adjustment Factor	Left	1.0		Tbl 9-4, p 9-35
	Right	1.0		
Major Road Through Lanes on Each Approach	1	2.0	(Use 1 for I	RI/RO[/LI] only)
Median Width (in "Lane Equivalents")		12.0	(Use 0 for I	RI/RO[/LI] only)
Minor Road Approach Upgrade, if >3%		0.00	%	_
Minor Road Access (check restricted)				
	LI	LO/Th	RO	

Stopping Sight Distance = Brake Reaction Distance + Braking Distance

d=1.47Vt+1.075 $\frac{V^2}{a}$ Neglecting Effect of Grade Eq 3-2, p 3-4 Calculated d= 359.8 ft Design d= 360 ft With Effect of Grade Eq 3-3, p 3-5 d=1.47Vt+-Calculated d= 359.1 ft - left 360 ft - right Design d= 359.1 ft - left 360 ft - right

SSD's do not consider design for truck operations, since better visibility is considered to offset longer braking distance.

§3.2.2, p 3-6

February 2019 Appendix J

Smoke Tree

Sight Distance Analysis

Location: Smoke Tree Access B & Lincoln Dr

Intersection Sight Distances

section Signit Distances		AASHTO Ref		
Case B—Intersections with Stop Control	ol on the Minor	Road		§9.5.3, p 9-36
Case B1—Left Turn from the Minor	Road			§9.5.3, p 9-36
Design Vehicle		Time (Sap (t _g)	
Passenger Car		7.5	sec	Tbl 9-5, p 9-37
Single-Unit Tuck		9.5	sec	Tbl 9-5, p 9-37
Combination Truck		11.5	sec	Tbl 9-5, p 9-37
Time gap adjustments				
Add'l lanes to cross (1st is as	ssumed)			
Passenger Car		0.5	sec	See Notes
Trucks		0.7	sec	below
Minor Approach Upgrade (P	er each 1%>3%	0.2	sec	Tbl 9-5, p 9-37
Site data				
Major Road Lanes on Left Ap		§9.5.3, p 9-37		
Minor Road Approach Upgrad	le, if >3%	0	%	§9.5.3, p 9-37
Time Gap based on site data Design Vehicle Gap+Adj for A	pproach Grade:	>3%+Adjs for	Add'l Lai	nes & Median
Passenger Car		14.0	sec	
Single-Unit Tuck		18.6	sec	
Combination Truck		20.6	sec	
ISD to left & right along Major Ro	ad ISD=1.4	$7V_{major}t_g$	(ft)	Eq 9-1, p 9-37
		ISD to Left		
		and Right	-	
Passenger Car	calculated ISE		ft	
	design ISE)= 930	ft	
Single-Unit Tuck	calculated ISE)= 1230.4	ft	
	design ISE)= 1235	ft	

calculated ISD= design ISD= 1362.7 ft 1365 ft

Combination Truck

Smoke Tree Sight Distance Analysis

Location: Smoke Tree Access B & Lincoln Dr

Intersection Sight Distances (cont'd)

		AASHTO Ref
Case B2—Right Turn from the Minor Road		§9.5.3, p 9-40
&		00.5.0
Case B3—Crossing Maneuver from the Minor Road		§9.5.3, p 9-43
Design Vehicle	Time Gap	(t_g)
Passenger Car	6.5 se	, , ,
Single-Unit Tuck	8.5 se	, p
Combination Truck	10.5 se	Tbl 9-7, p 9-40
Time gap adjustments - Case B-3 Only*		
Add'l lanes to cross (1st is assumed)		
Passenger Car	0.5 se	See Notes
Trucks	0.7 se	below
Minor Approach Upgrade (Per each 1%>3%)	0.1 se	Tbl 9-7, p 9-40
Site data		
Major Road Lanes on Left Approach	2.0	§9.5.3, p 9-40
Minor Road Approach Upgrade, if >3%	0 %	§9.5.3, p 9-40
mile Head Appleadin Opgicade, ii O/o	0 ,0	30.0.0, p 0 .0
Time Gap based on site data (sec)	B2 & B3	B3 Only
Design Vehicle Gap+Adj for Approach Grade>3	%(+Adjs for Ad	Id'I Lanes & Median for B3)
Passenger Car	13.0	13.5
Single-Unit Tuck	17.6	18.3
Combination Truck	19.6	20.3
Combination fracti	.0.0	20.0

	ISD to left (B2/B3) & right (B3)	along Major RdISD=	$1.47V_{major}t_{a}$ (ft) Eq 9-1, p 9-37
--	--------------------	----------------	--------------------	--------------------------	------------------

				ISD to right
			(B2 & B3)	(B3 Only)
Passenger Car	calculated	ISD=	860.0	893.0
	design	ISD=	860	895
Single-Unit Tuck	calculated	ISD=	1164.2	1210.5
Ç	design	ISD=	1165	1215
Combination Truck	calculated	ISD=	1296.5	1342.8
	design	ISD=	1300	1345

^{*}Number of major road lanes is irrelevant in Case B2.

The differences between Case B1 and Cases B2 & B3 are reduced time gaps and time gap adjustment for the minor approach upgrade. §9.5.3, p 9-43

Smoke Tree

Sight Distance Analysis

Location: Smoke Tree Access B & Lincoln Dr

Intersection Sight Distances (cont'd)

section signi Distances (cont u)					AASHTO Ref
Case F—Left Turns from the Major Ro	ad				§9.5.3, p 9-51
Design Vehicle			Time C	Sap (t _g)	
Passenger Car			5.5	sec	bl 9-13, p 9-51
Single-Unit Tuck			6.5	sec	bl 9-13, p 9-51
Combination Truck			7.5	sec	bl 9-13, p 9-51
Time gap adjustments Add'l lanes to cross (1 assu	ımed)				
Passenger Car	,		0.5	sec	See Notes to
Trucks			0.7	sec	bl 9-13, p 9-51
Site data					
Opposing Lanes (adj'd for x-v	wide median)		13.0		
Time Gap based on site data Design Vehicle Gap+Adj for A	Add'l Opposii	na Lane	s		
Passenger Car		Ü	12.0	sec	
Single-Unit Tuck			15.6	sec	
Combination Truck			16.6	sec	
ISD to front along Major Road	ISD=	:1.47V _m	_{ajor} t _g	(ft)	Eq 9-1, p 9-37
Passenger Car	calculated	ISD=	793.8	ft	
-	design	ISD=	795	ft	
Single-Unit Tuck	calculated	ISD=	1031.9	ft	
	design	ISD=	1035	ft	
Combination Truck	calculated	ISD=	1098.1	ft	

The differences between Case F and Cases B1, B2 & B3 are reduced time gaps and no time gap adjustment for any minor approach upgrade. §9.5.3, p 9-43

design ISD=

1100 ft

SIGHT DISTANCE SUMMARY

	Governing			Combo
Sight Distance Type	Case	Car	SU Truck	Truck
Stopping				
Without effect of grade		360	N/A	N/A
With effect of grade on left		360	N/A	N/A
With effect of grade on right		360	N/A	N/A
Intersection				
To Right	B1	930	1235	1365
To Left	B2/B3	860	1165	1300
On Major Road	F	795	1035	1100

February 2019 Appendix J

Smoke Tree Resort

Sight Distance Analysis

Location: Quail Run Road

Assumptions and/or Givens			
Elements of Design from AASHTO	6th	Edition	AASHTO Ref
Driver Eye Height		0.50.6	00 0 0 - 0 44
Passenger Vehicle		3.50 ft	§3.2.6, p 3-14
Truck		7.60 ft	§3.2.6, p 3-14
Object Height			
Stopping Sight Distance		2.00 ft	§3.2.6, p 3-14
Passing Sight Distance		3.50 ft	§3.2.6, p 3-14
Vehicle Height		4.25 ft	§3.2.6, p 3-14
Driver Eye Location			
From Edge of Major Rd Trave	eled Way	14.50 ft	9.5.3, B1
Deceleration Rate (a)			
Passenger Vehicle		11.20 ft/sec ²	§3.2.2, p 3-3
Truck		N/A ft	
Brake reaction time (t)		2.50 sec	§3.2.2, p 3-4
Site Specific Data (Bike & turn lanes a	re outside travel	ed way and are no	ot considered)
Major Street Design Speed (V _{major})	1	30 MPH	
Grades - Approaching Minor Stree	t from: (- = appro	aching downhill)	
Left (G _L)		%	
Right (G _R)		%	
Approach Grade Adjustment	Factor Lef	t 1.0	Tbl 9-4, p 9-35
	Righ		
Major Road Through Lanes on Ea			1 for RI/RO[/LI] only)
Median Width (in "Lane Equivalent			for RI/RO[/LI] only)
Minor Road Approach Upgrade, if		%	
Minor Road Access (check restrict			
	LI	LO/Th R	3
Stopping Sight Distance = Brake Reaction I	Distance + Brakir	ng Distance	
Neglecting Effect of Grade	d=1.47Vt+1.075		Eq 3-2, p 3-4
·	d=1.47Vt+1.07	a	
	Calculated d=	= 196.7 ft	
	Design de		
	Design u-	200 11	
With Effect of Grade	1 4 477 %	V^2	Eq 3-3, p 3-5
<u></u>	d=1.4/Vt+	V ² (<u>a</u>)±G)	
	30((32.2)±G)	
	Calculated d	= 196.3 ft - left	•
	50.00.000	200 ft - rigi	
	Design d=		
	g u	200 ft - rigi	
CCDIs de not consider desire for track		la addica a cola libilità a l'a	
SSD's do not consider design for truck considered to offset longer braking dista		better visibility is	83 2 2 r 2 E
considered to onset longer braking dista	IICC.		§3.2.2, p 3-6

November 2018

Page 1 of 4 Appendix J Smoke Tree Resort

Location: Quail Run Road

Intersection Sight Distances

tion Signt Distances				
				AASHTO Ref
ase B—Intersections with Stop Contr	ol on the Mi	nor Ro	ad	§9.5.3, p 9-36
Case B1-Left Turn from the Minor	Road			§9.5.3, p 9-36
Design Vehicle			Time Gap (t	(a)
Passenger Car			7.5 sec	Tbl 9-5, p 9-37
Single-Unit Tuck			9.5 sec	Tbl 9-5, p 9-37
Combination Truck			11.5 sec	Tbl 9-5, p 9-37
Time gap adjustments				
Add'l lanes to cross (1st is as	ssumed)			
Passenger Car	,		0.5 sec	See Notes
Trucks			0.7 sec	below
Minor Approach Upgrade (F	Per each 1%	>3%)	0.2 sec	Tbl 9-5, p 9-37
Site data				
Major Road Lanes on Left Ap	proach		1.0	§9.5.3, p 9-37
Minor Road Approach Upgrad			0 %	§9.5.3, p 9-37
Time Gap based on site data Design Vehicle Gap+Adj for A Passenger Car Single-Unit Tuck Combination Truck	Approach Gra	ade>3%	6+Adjs for Add'l 7.5 sec 9.5 sec 11.5 sec	Lanes & Median
ISD to left & right along Major Ro	ad ISD=	1.47V _n	_{najor} t _g (ft)	Eq 9-1, p 9-37
		1	SD to Left	
			and Right	
Passenger Car	calculated		330.8 ft	
3	design	ISD=	335 ft	
Single-Unit Tuck	calculated	ISD=	419.0 ft	
-	design	ISD=	420 ft	
Combination Truck	calculated	ISD=	507.2 ft	
	design	ISD=	510 ft	

November 2018 Appendix J

Sight Distance Analysis

Page 2 of 4

Smoke Tree Resort Sight Distance Analysis Location: Quail Run Road

Intersection Sight Distances (cont'd)

Trucks

AASHTO Ref Case B2—Right Turn from the Minor Road §9.5.3, p 9-40 Case B3-Crossing Maneuver from the Minor Road §9.5.3, p 9-43

Design Vehicle Time Gap (t_o) Passenger Car 6.5 sec Tbl 9-7, p 9-40 Single-Unit Tuck 8.5 sec Tbl 9-7, p 9-40 Combination Truck 10.5 sec Tbl 9-7, p 9-40 Time gap adjustments - Case B-3 Only* Add'l lanes to cross (1st is assumed) Passenger Car 0.5 sec See Notes

Minor Approach Upgrade (Per each 1%>3%) 0.1 sec Tbl 9-7, p 9-40 Site data Major Road Lanes on Left Approach 1.0 §9.5.3, p 9-40 Minor Road Approach Upgrade, if >3% 0 % §9.5.3, p 9-40

0.7 sec

below

B2 & B3 B3 Only Time Gap based on site data (sec) Design Vehicle Gap+Adj for Approach Grade>3%(+Adjs for Add'l Lanes & Median for B3) Passenger Car 6.5 6.5 Single-Unit Tuck 8.5 Combination Truck 10.5 10.5

ISD to left (B2/B3) & right (B3) along Major Rd ISD=1.47V_{major}t_g (ft) Eq 9-1, p 9-37

			ISD to Left	ISD to right
			(B2 & B3)	(B3 Only)
Passenger Car	calculated	ISD=	286.7	286.7
	design	ISD=	290	290
Single-Unit Tuck	calculated	ISD=	374.9	374.9
	design	ISD=	375	375
Combination Truck	calculated	ISD=	463.1	463.1
	design	ISD=	465	465

*Number of major road lanes is irrelevant in Case B2.

The differences between Case B1 and Cases B2 & B3 are reduced time gaps and time gap adjustment for the minor approach upgrade. §9.5.3, p 9-43

November 2018 Appendix J

Smoke Tree Resort Sight Distance Analysis Location: Quail Run Road

Intersection Sight Distances (cont'd)

AASHTO Ref Case F-Left Turns from the Major Road §9.5.3, p 9-51

Design Vehicle			Time C	Sap (t _g)		
Passenger Car			5.5	sec	bl 9-13	, p 9-51
Single-Unit Tuck			6.5	sec	bl 9-13	, p 9-51
Combination Truck			7.5	sec	bl 9-13	, p 9-51
Time gap adjustments Add'l lanes to cross (1 assu	ımed)					
Passenger Car			0.5	sec	See I	Notes to
Trucks			0.7	sec	bl 9-13	, p 9-51
Site data						
Opposing Lanes (adj'd for x-v	vide median)		0.0			
Time Gap based on site data Design Vehicle Gap+Adj for A	Add'l Opposin	ng Lanes				
Passenger Car			5.5	sec		
Single-Unit Tuck			6.5	sec		
Combination Truck			7.5	sec		
ISD to front along Major Road	ISD=	:1.47V _{major}	t _a	(ft)	Eq 9-1	, p 9-37
Passenger Car	calculated	ISD=	242.6	ft		
	design	ISD=	245	ft		
Single-Unit Tuck	calculated	ISD=	286.7	ft		
	design	ISD=	290	ft		
Combination Truck	calculated design		330.8 335			

The differences between Case F and Cases B1, B2 & B3 are reduced time gaps and no time gap adjustment for any minor approach upgrade. §9.5.3, p 9-43

SIGHT DISTANCE SUMMARY

Sight Distance Type	Governing Case	Car	SU Truck	Combo Truck
Stopping				
Without effect of grade		200	N/A	N/A
With effect of grade on left		200	N/A	N/A
With effect of grade on right		200	N/A	N/A
Intersection				
To Right	B1	335	420	510
To Left	B2/B3	290	375	465
On Major Road	F	245	290	335

November 2018 Appendix J

Page 3 of 4

Page 4 of 4