Paradise Valley Watershed Studies *Update to Town Council*

Meeting Purpose

- Update Town Council on:
 - Project Purpose
 - FCDMC Projects
 - Public Information and Outreach
 - Hazards Identification
 - Draft Alternatives Analysis

Project Purpose

- Continue the community discussion about flooding and what to do about it
- Identify flooding and erosion hazards
- Gauge public tolerance for flood risk
- Investigate possible solutions to flooding
 - Help you understand what it takes manage/improve drainage
- Investigate funding for drainage projects
- Have an informed discussion on what the Town's role in managing stormwater could be
- Update the Town's Stormwater Standards

Study Areas

Project Timeline

Begin

• Oct, 2015

Cheney Hazards ID Memo

• Feb, 2016

Cheney Alternatives Public Meeting

• May, 2016

Estimate Receive Cherokee

Cherokee Data from Maricopa County

• Dec, 2016

Cheney Hazards ID Public Meeting

• Dec, 2015

Cherokee Hazards ID Public Meeting

• Mar, 2016

Draft Cheney Alternatives Analysis

• Sept, 2016

Why We're Here?

Why We're Here?

What Have We Done?

- Advertised project on Town website
- Publish a project newsletter
- Held three public meetings
 - Advertised in the Paradise Valley Independent
 - Post card mailers sent to residents
 - Emailed residents using the Town's Code Red service
- Solicited feedback using online surveys
 - 80 respondents (5% of the Cheney Watershed owners)

Advertise Project on Town Website

Project Newsletter Emailed to Residents

- Sent Postcards to Residents
- Advertised in the <u>Independent</u>

- Three Public Meetings
 - Keep residents informed
 - Ask for their help

- Solicited feedback using online survey
 - 24 Questions
 - 80 respondents (5% of owners)

Trends in the Data:

- Nearly all respondents were speaking about their home that they own
- Roughly half have been in their home for over 20 years
- 66% stated that either their home, their property or the street in front of their property was flooded during the <u>September, 2014 event</u>
- About 50% expressed that they are experiencing more frequent flooding damage than they have in the past
- 10% stated that they experience flooding damage from either small or medium events... (thus, most damage is from large events)

Trends (cont.):

- Respondents were equally likely to experience the effects of sediment and debris deposition as they were with flooding
- Over 50% said that the Town should spend public funds to reduce or eliminate flood damage to the road in front of their property
- Over 60% responded that they would be in favor of the Town taking a more active role in managing or maintaining local washes

Two Conclusions:

- Both flood damage and the inconvenience of cleaning up sediment/debris are concerns to the residents
- 2. There is momentum building to possibly support implementing a stormwater management fee and expending public funding to mitigate flood damage risk.
- 3. This support is primarily for the protection from larger storm events (<u>not</u> the September, 2014 storm).

Town Staff Input

Public Involvement

Field Investigations

Online GIS Webmap

Purpose of Modeling

- Structure Inundation
- Property Inundation
- Street Inundation
- Scour & Sedimentation

Cheney Watershed Statistics

- 1,400 Structures
- 1,521 Parcels
- 25 Miles of Streets

Findings (10-year)

- 39 Structures (3%)
- 221 Parcels (15%)
- 1.8 miles of Streets (7%)

Findings (100-year)

- 125 Structures (9%) ← nationally 5% are in a FEMA floodplain
- 322 Parcels (21%)
- 2.7 miles of Streets (11%)

Scope:

- Develop possible drainage improvements
- Modeling them to estimate their effectiveness
- Evaluate multiple levels of protection
- Estimate their costs
- Evaluate each holistically

...and...

- Account for possible Maricopa County improvements
 - What happens if the County doesn't Build theirs?

Evaluation Categories:

- Performance
- Cost
- Public Acceptance
- Constructability/Construction Phasing

Table 1 - Cheney 1 Flow Depth Reduction

Flow Depth Reduction Ranges	10-Year No. of Buildings	100-Year No. of Buildings
0.101 - 0.5	*	6
0.501 - 1.0	*	31
1.001 - 1.5	*	6
1.501 - 2.0+	*	2
		45

Paradise Valley Watershed Studies - Cheney Watershed

Preliminary Cost Estimate Milestone: Alternatives Analysis

Flooding Reduction

100-Year Street Flooding Reduction					
Exst Length (Miles)	Proposed Length (Miles)	Reduction Length (Miles)			
1.17	0.78	0.39			

main inundated for the 10-year storm event

Alternative Cheney 1

		7.000				
Element ID	Description	Potential Utility Relocation Cost (30% Contingency)	Land Aquisition Cost	Costruction Cost (30% Contingency)	Mobilization, Miscellaneous Removals, & Traffic Control	Element Cost
P1-1	1291 LF of 48" Ø Storm Drain	\$143,000	\$312,000	\$631,498	\$36,058.56	\$1,122,557
P1-2	187 LF of 24" Ø Storm Drain	\$0	\$0	\$90,464	\$5,166	\$95,630
P1-3	1310 LF of 48" Ø Storm Drain	\$250,900	\$0	\$634,842	\$36,249	\$921,991
P2-1 *	1366 LF of 2-60" Ø Storm Drain	\$0	\$0	\$0	\$0	\$0
P3-1	435 LF of 30" Ø Storm Drain	\$44,200	\$0	\$203,743	\$11,634	\$259,576
P4-1	759 LF of 30" Ø Storm Drain	\$35,100	\$291,200	\$334,767	\$19,115	\$680,182
P4-2	1246 LF of 30" Ø Storm Drain	\$75,400	\$0	\$520,263	\$29,707	\$625,370
B1-1	Sediment Basin	\$18,200	\$195,000	\$23,120	\$1,320	\$237,640

* Element represents a FCDMC planned element

 Construction Cost
 \$2,577,946

 Land Acquisition Cost
 \$798,200

 Utility Relocation Cost
 \$550,900

 Total Cost
 \$3,942,946

370 640 ,946 200 ,946

PARADISE VALLEY WATERSHED STUDIES CHENEY WATERSHED ALTERNATIVE ANALYSIS

		Benefit		
		(Structures No Longer Inundated)		
Alternative	Estimated Cost	10-Year Storm	100-Year Storm	
Cheney 1	\$3.9M	20 (out of 20)	18 (out of 63)	
Cheney 2	\$4.7M	20 (out of 20)	20 (out of 63)	
Cheney 3	\$6.6M	20 (out of 20)	23 (out of 63)	
Mockingbird 1	\$4.9M	5 (out of 7)	4 (out of 25)	
Mockingbird 2	\$5.6M	5 (out of 7)	4 (out of 25)	
Mockingbird 3	\$1.5M	5 (out of 7)	1 (out of 25)	
Quartz Mntn 1	\$3.0M	N/A	N/A	
Quartz Mntn 2	\$3.1M	N/A	N/A	
Quartz Mntn 3	\$3.1M	N/A	N/A	
Maverick 1	\$2.6M	5 (out of 9)	2 (out of 25)	
Maverick 2	\$3.5M	7 (out of 9)	2 (out of 25)	

Next Steps:

- Revise draft to include Town Staff comments (in progress)
- Conduct HAZUS analysis to estimate monetary value of benefits
- Finalize evaluations of alternatives & issue report

Forthcoming Discussions

Future Meetings:

- What role the town takes in managing stormwater going forward?
- Storm Drainage Design Manual

Questions?

